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Abstract 

Background:  Urine has evolved as a promising body fluids in clinical proteomics because it can be easily and non-
invasively obtained and can reflect physiological and pathological status of the human body. Many efforts have been 
made to characterize more urinary proteins in recent years, but few have focused on the analysis throughput and 
detection reproducibility. Increasing the urine proteomic profiling throughput and reproducibility is urgently needed 
for discovering potential biomarker in large cohorts.

Methods:  In this study, we developed a fast and robust workflow for streamlined urinary proteome analysis. The 
workflow integrate highly efficient sample preparation technique and urinary specific data-independent acquisition 
(DIA) approach. The performance of the workflow was systematically evaluated and the workflow was subsequently 
applied in a proof-of-concept urine proteome study of 21 kidney cancer (KC) patients and 22 healthy controls.

Results:  With this workflow, the entire sample preparation process takes less than 3 h and allows multiplexing 
on standard centrifuges. Without pre-fractionation, our newly developed DIA method allows quantitative analysis 
of ~ 1000 proteins within 80 min of MS time (~ 15 samples/day). The quantitation accuracy of the whole workflow was 
excellent with median CV of 9.1%. The preliminary study on KC identified 125 significantly changed proteins.

Conclusions:  The result suggested the feasibility of applying the high throughput workflow in extensive urinary 
proteome profiling and clinical relevant biomarker discovery.
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Background
Kidney cancer (KC) accounts for about 3% of all adult 
cancers and is one of the most fatal diseases of the geni-
tourinary system [1]. Early diagnosis of KC is crucial for 
the patients as it associates with excellent 5-year survival 
rate. However, around 30% of KC patients are diagnosed 
at the metastatic stage and are characterized with poor 
prognosis [2, 3]. The pathogenesis of KC have not been 

fully elucidated and there is still no acknowledged bio-
marker which can be used for its diagnosis or prognosis 
[4]. Discovery of KC related potential biomarkers has 
important clinical significance.

Urine is an ideal detection objective for identifying bio-
markers of urological malignancies as it can be easily and 
non-invasively obtained and contains cells and proteins 
that originate from urogenital system [5, 6]. Furthermore, 
as a glomerular filtrate of plasma, the urine proteome can 
reflect physiological and pathological status of the human 
body [7]. Recent studies show that urinary proteome has 
great potential in classification and diagnosis both uro-
genital and systemic diseases [8–14]. However, urine 
is also a difficult proteomic sample to work with, due 
to its low protein concentration, high dynamic range of 
protein expression and high inter-individual variability. 
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Compared with human plasma and tissue proteome, the 
urinary proteome has been relatively less studied.

Mass spectrometry (MS) has evolved as the mainstay 
for high-throughput proteome profiling of complex bio-
logical samples recently. Many efforts have been made 
to characterize urinary proteomes using MS in recent 
years. The regular urinary sample preparation process 
usually include protein extracted by organic solvent 
precipitation, protein re-dissolving and overnight diges-
tion. Furthermore, to increase the detection depth, pro-
tein or peptide fractionation prior to LC–MS-analysis 
is currently widely employed. These processes typically 
include gel electrophoresis, ion exchange chromatogra-
phy or high-PH reversed phase (RP) chromatography [15, 
16]. Using such strategies, it has now become possible to 
identify more than 1500 proteins in a single urine sam-
ple [17] and even more than 6000 proteins when using 
hundreds of fractions from multi-dimensional separation 
strategies and pooled urine from dozens of humans [18]. 
However, the pre-fractionation steps are undesirable in 
clinical application because they raise pre-analytical per-
turbations and restrict throughput. Due to the exertive 
processes of sample preparation and limited through-
put, small sample size is usually enrolled in the discov-
ery phase of current urinary biomarker studies, which 
reduces the credibility of the discovered biomarkers [19]. 
Up to now, few urinary biomarkers derived from ‘discov-
ery’ studies have been successfully translated into clinical 
practice [20]. Increasing the urine proteomic detection 
throughput and reproducibility is urgently needed for 
discovering and verifying biomarkers with large sample 
cohorts.

A high-throughput proteome profiling workflow 
should include both efficient sample preparation 
method as well as robust MS acquisition approach. For 
sample preparation, the development of integrated pro-
teomics sample preparation technologies has attracted 
increasing attention recently. Mann’s group reported 
an in-StageTip approach for quickly processing of cell 

and plasma samples in less than 2 h [21, 22]. Recently, 
a simple and integrated spintip-based proteomic tech-
nology (SISPROT) was developed by our group and has 
been successfully used in proteomic profiling of cell 
[23], tissue [24], microbiome [25], and plasma [26]. It 
could be of great significance to apply such technolo-
gies for urinary sample preparation. In terms of MS 
analysis, data-dependent acquisition (DDA) is remain-
ing the most widely adopted MS approach for untar-
geted screening in discovery proteomics. However, the 
semi-stochasticity of precursor ion selection and non-
uniformity of scan point leads to poor reproducibility 
and compromise the accuracy of quantitative analy-
sis [27, 28]. Compared with DDA, data-independent 
acquisition (DIA) method is emerging as a powerful 
technology for quantitative proteomics recently [29]. 
The DIA approach divides all the precursor ions into 
several consecutive windows for fragmentation, and 
acquires all the resulting fragments in each isolation 
window. It features with high-throughput, quantitative 
consistency, and traceable data, which is very suitable 
for proteomic biomarker discovery studies [30, 31].

In this paper, a streamlined urinary proteome pro-
filing platform was developed by integrating highly 
efficient sample preparation procedure and urinary 
specific variable window DIA approach (Fig.  1). Start-
ing with 2  mL of urine, all the preparation processes 
were performed in a centrifuge-based procedure within 
3  h and can be easily multiplexed. Without pre-frac-
tionation, our developed DIA approach enables the 
quantification of ~ 1000 proteins with 80 min gradient 
time on an Orbitrap Fusion mass spectrometer. Fur-
thermore, we compared the performance of the project 
specific library with two resource libraries. The results 
indicate the great potential of using resource spectral 
libraries for DIA data analysis. The developed workflow 
was then applied in a proof of concept urinary pro-
teome study of KC.

Fig. 1  Workflow of the high-throughput urinary proteome profiling
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Methods
Sample collection
The first-morning urine samples of 21 KC patients and 
22 healthy controls were collected from First Hospital 
of Xiamen. The KC patients were diagnosed by histo-
pathological examination and none had undergone 
nephrectomy before sample collection. Samples with 
hematuria or proteinuria were excluded from the study. 
The clinical information of the KC patients is provided 
in Additional file 1: Table S1. Samples were centrifuged 
at 2000×g for 10 min at 4 °C to sediment cellular frag-
ments and then stored at − 80  °C before analysis. For 
construction of project specific spectral library, two 
pooled urinary samples were prepared by mixing equal 
volume of each sample in each condition.

Urine sample preparation
Urine samples were prepared with a centrifuge-based 
protocol, which combined ultrafiltration and recently 
developed SISPROT technology [23] with optimization 
for urine. 2 mL neat urine were concentrated using an 
ultrafiltration devices (Amicon® Ultra-4 10  K, Merck) 
according to the instructions. The protein concentra-
tion of each urine were measured using Bradford pro-
tein assay (Bio-Rad, USA). The brief procedure for 
SISPROT is as following. Firstly, the SISPROT tip was 
made by filling 5 pieces of C18 disk (3 M Empore, USA) 
and then 2 mg POROS SCX beads (Applied Biosystems, 
USA) into a standard 200 μL pipette tip. Secondly, the 
urine sample (~ 20  μg of protein) was acidified with 
0.1% (v/v) formic acid to pH 2–3 before loading onto 
the SISPROT tip by centrifugation. After washing with 
20% (v/v) acetonitrile (ACN) in 8  mM potassium cit-
rate buffer (pH 3), the proteins were then reduced with 
10 mM Tris (2-carboxyethyl) phosphine hydrochloride 
(TCEP) in 9  mM potassium citrate buffer (pH 3) for 
15  min (at room temperature). Protein digestion was 
subsequently carried out by injecting into the tip with 
2  μg/μL trypsin (Promega, Madison, WI) in 10  mM 
iodoacetamide (IAA), 100  mM Tris–HCl (pH 8), and 
incubating in darkness for 1  h (at room temperature). 
The peptides were subsequently transferred to the 
C18 disk with 200  mM ammonium formate (AF, pH 
10). After washing with 5  mM AF (pH 10), the pep-
tides were directly eluted by 40 μL of 80% (v/v) ACN in 
5 mM AF (pH 10) or fractionated by a stepwise increas-
ing gradient of ACN (3, 6, 9, 15, and 80%) in 5  mM 
AF (pH 10). Finally, the obtained peptides were dried 
and resuspended in 10 μL of 0.1% (v/v) formic acid 
with iRT peptides (Biognosys, Schlieren, Switzerland) 
adding into each sample according to manufacturer’s 
instructions for LC–MS analysis. The entire sample 

preparation process takes less than 3 h and can be mul-
tiplexed on centrifuges with excellent reproducibility.

DDA acquisition and data analysis
DDA analysis was performed on an Orbitrap Fusion mass 
spectrometer connected to an EASY-nLC 1000 system 
(Thermo Fisher Scientific). The peptide separation was 
performed on an integrated spray-tip analytical column 
(75  μm i.d. × 20  cm) packed with 1.9  μm ReproSil-Pur 
120 Å C18 resins (Dr. Maisch GmbH, Ammerbuch, Ger-
many). A binary buffer system of 0.1% (v/v) formic acid 
in water (buffer A) and 0.1% (v/v) formic acid in ACN 
(buffer B) was used for separation at a flow rate of 250 
nL/min. The injection volume is 2 μL. A 80 min gradient 
was performed as follows: from 3 to 7% B in 2 min, from 
7 to 22% B for 50 min, from 22 to 35% B for 10 min, from 
35 to 90% B in 2 min, and held at 90% B for 16 min. The 
DDA method consisted of a full MS scan over m/z range 
of 350–1550 at a resolution of 120,000 in the Orbitrap 
mass analyzer followed by data dependent MS/MS scans 
with a Top Speed method (3 s). MS/MS was carried out 
in the Orbitrap mass analyzer with a resolution of 15,000 
using an isolation window of 1.6 m/z and HCD fragmen-
tation with normalized collision energy (NCE) of 30%. 
The dynamic exclusion time was set to 40 s.

The Sequest HT [32] node integrated within the Pro-
teome Discoverer (PD) software (Version 2.1, Thermo 
Fisher Scientific) was applied to search the raw data 
against the human Uniprot fasta database (70,947 entries, 
downloaded on Mar 10, 2017) appended with the Biog-
nosys iRT peptides sequence. A maximum missed cleav-
ages of two were allowed. Carbamidomethylation of 
cysteine was chosen as static modification, while oxida-
tion of methionine and deamidation of asparagine and 
glutamine were set as dynamic modifications. False dis-
covery rate (FDR) was set to 1% for peptide spectrum 
matches and proteins. MaxQuant [33] (version 1.5.2.8) 
was applied for the label-free quantification (LFQ) anal-
ysis of proteins with default settings. The same protein 
sequence database and same modification parameters 
were used as the PD search. The FDR was controlled as 
1% for both peptide spectrum matches and proteins.

Generation of project specific library
For generation of project specific library, the pooled 
urine samples were measured in two ways. The samples 
were fractionated into 5 fractions with high-PH RP frac-
tionation strategy and all the fractions were measured 
by DDA. Unfractionated samples were analyzed with 
DDA in four technical replicates. The injection volume 
is 2 μL for unfractionated sample and 5μL for fraction-
ated components. The acquired DDA data were searched 
with PD software and the search result was imported to 
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Spectronaut 11.0 (Biognosys) for library generation. The 
default settings were used as follows: fragment ions were 
selected over m/z range of 300 to 1800, fragments per 
peptide were restricted from 3 to 6, and a FDR threshold 
was set as 0.01.

DIA sample acquisition and data analysis
The DIA experiments were carried out on the same 
instrument as DDA. The same LC separation conditions 
were applied. A variable window DIA approach (termed 
as vDIA) specific for urine samples was developed. The 
precursor m/z distribution was obtained according to 
the DDA experiment of the pooled urine samples and 
the window list was established based on the criteria of 
equalizing the number of parent ions in each isolation 
window [34]. Each DIA cycle consisted of a full MS scan 
over m/z range of 350–1400 with a resolution of 60,000 
in the Orbitrap mass analyzer followed by 30 vDIA scans 
with a resolution of 30,000 and NCE of 30%. The cycle 
time was 2.4 s. The classic DIA approach contains a full 
MS scan and 32 DIA scans with fixed isolation width. The 
full scan was set over m/z range of 395–1205 with a reso-
lution of 60,000; followed by DIA scans with 26 m/z fixed 
isolation width, resolution of 30,000 and NCE of 30% 
[35]. Details of the two methods are listed in Additional 
file 2: Table S2 and Additional file 3: Table S3.

DIA data were analyzed with Spectronaut 11.0 (Biog-
nosys) with default settings as follows: peak detection, 
dynamic iRT; correction factor, 1; interference correction 
on MS2 level, enabled; and cross run normalization, ena-
bled. Protein inference was performed with the ID picker 
algorithm [36] in Spectronaut. The FDR cutoff was set as 
1% for both peptide and protein levels.

For statistical analysis, the data were further analyzed 
by SPSS (version 18.0). Student’s t test was used to cal-
culate the significance of protein intensity changes. Gene 
ontology (GO) enrichment was performed using DAVID 
(version 6.8) [37, 38].

Results
Development of urinary sample preparation procedure
In this study, we tried to apply the SISPROT technol-
ogy for high efficient urine sample preparation. Due to 
the relatively low protein concentration feature of urine 
sample and the limited loading volume of SISPROT 
device, it is impractical to use SISPROT technology to 
process urine sample directly. As an attempt, ultrafiltra-
tion technology was combined with SISPROT for sam-
ple preparation in our study. The neat urine were rapidly 
concentrated and desalted by ultrafiltration device. After 
protein concentration measurement, ~ 20 ug of pro-
tein filtrate were used for subsequent protein digestion 
on SISPROT. The digestion efficiency of urine sample 

on SISPROT was evaluated by calculating the missed 
cleavage rates of our DDA data by performing an addi-
tional search in the PD software allowing for maximum 
missed cleavages of ≤ 5. As shown in the Additional 
file  4: Table  S4, ~ 99% of PSMs have a missed cleavage 
number of ≤ 2, which indicates the high efficiency of the 
SISPROT technology in processing urine samples. The 
entire sample preparation process takes less than 3 h and 
allows multiplexing on standard centrifuges.

Development of urine specific DIA method
The regular DIA method separate the whole mass range 
into several fixed isolation windowes. Due to the sample 
specific and uneven precursor ions distribution over the 
mass range, the number of precursor ion in each isola-
tion window varies greatly when using fixed window 
width. If the distribution of parent ions in each isolation 
window is averaged, the detection performance will be 
improved. Varesio et  al. found that variable windows in 
SWATH-MS acquisition can improve selectivity in prot-
eomic analysis of cell sample [34]. As an attempt, we try 
to develop a variable window DIA (vDIA) approach that 
is specifically targeted for urine samples here. The pre-
cursor m/z distribution of the urine sample was firstly 
obtained based on the DDA mode experiment on the 
pooled urine samples, and the variable window lists were 
then constructed based on the criteria of equalizing the 
number of precursor ions per each isolation window. 
To investigate how the method performs when compar-
ing with standard DDA and classic DIA, the same urine 
sample was measured over three replicates by the three 
methods, respectively. As shown in Fig.  2, the methods 
were benchmarked based on the number of measured 
peptides and proteins, identification reproducibility and 
quantitation accuracy.

The reproducibility was evaluated by calculating the 
percentage of peptides and proteins that identified in 
common over three repeated acquisitions. For DDA 
method, 881 proteins and 4440 peptides were identi-
fied in total, and only 547 (62%) proteins and 2095 (47%) 
peptides identified in common cover three replicates. 
The identification reproducibility was poor due to the 
semi-stochastic nature of DDA and may also due to the 
high protein diversity in both abundance and composi-
tion of urine sample. The data reproducibility was greatly 
improved in both protein and peptide levels when using 
DIA methods. Comparing with classic DIA approach, 
the number of proteins and peptides identified by vDIA 
method have increased 15.2% and 20.8%, respectively, 
with improved reproducibility. The identification repro-
ducibility is as high as 98% in protein level with our 
developed vDIA method.
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In order to compare quantitative performance, the 
DDA data were analyzed using MaxQuant for label-free 
quantification (Fig. 2c, d) [33]. As a result, 402 proteins 
were quantified with a median coefficients of variation 
(CV) of 9.1% for DDA. For classic DIA and vDIA meth-
ods, 855 proteins and 1008 proteins were quantified, 
respectively. Compared to the standard DDA method, 
the vDIA method quantified 2.1 times peptides and 2.5 
times proteins with a much better quantitative precision. 
It is worth mentioning that median CV% of our vDIA 
method in protein quantification is as low as 4.8%, with 
73% of proteins showing CVs of ≤ 10% and 87% of pro-
teins showing CVs of ≤ 20%.

Use of resource libraries for analysis of DIA data
To construct high-quality spectral library that contains 
MS coordinate information for targeted data extraction is 
critical for DIA data analysis. Generation of internal and 
project specific library is currently preferred method for 
analyzing of DIA data. Although there are some public 
available resources, the differences in separation gradi-
ents and instruments have limit the usage of these librar-
ies [31]. However, recent improvement in retention time 
prediction approaches have improve such problems and 
indicate the possibility of using such external spectral 

libraries [30, 39]. In this study, two resource libraries were 
tested for targeted analysis of our vDIA data and the per-
formance of the libraries were compared with internally 
built and project specific library. The basic information 
of the libraries is summarized in Fig.  3a (More detailed 
information is provided in Additional file  5: Table  S5). 
Spectronaut reference library is a Biognosys online urine 
reference library appended in the Spectronaut software, 
which was built based on 14 DDA acquisitions (2 h gradi-
ent) of fractionated urine samples. As shown in Fig.  3c, 
d, 1081 proteins and 5254 peptides were identified with 
the library. Although fewer peptides were identified 
than the project specific library, the number of identified 
proteins was comparable. The identification reproduc-
ibility of three replicates was 94% for proteins and 80% 
for peptides. For quantitative precision, 1012 proteins 
were quantified with a median CV of 5.9%. Although 
the reproducibility and quantitative precision is still not 
as good as the project specific library, the performance 
is good enough for practical application. In addition, 803 
proteins (74% of all) detected by the library were overlap 
with the project specific library (Fig.  3b), indicating the 
high relevance of the two libraries and the accuracy in 
protein detection. To further assess the effect with regard 
to the source of libraries, a pan human library published 

Fig. 2  Performance comparison among standard DDA, classic DIA and vDIA over three repeated acquisitions. a, b Total number of identified 
proteins and peptides were plotted. The column is separated into proteins or peptides which were detected in common (dark blue) and those 
detected in only one or two replicates (gray). c, d Distribution of quantified proteins and peptides in each CV% levels
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by Rosenberger et  al. was applied [40]. The library was 
built with a different instrument type, a time of flight 
(TOF)-MS, and was generated based on 331 DDA meas-
urements from fractionated samples of different human 
cell lines, tissues and affinity enriched protein samples, 
which covers more than 10,000 human proteins. As 
shown in Fig. 3c–f, the performance of this large reposi-
tory human library is inferior to the Spectronaut urine 

reference library. Overly large spectral libraries that only 
a fraction can be recovered from the data might reduce 
the sensitivity and peptide assignment confidence of the 
targeted analysis. The lower identification reproducibil-
ity with this library was probably due to the irrelevant 
increase in large search space and variability of instru-
ment dependent peptide fragmentation. However, 903 
proteins were still quantified with a small median CV 

Fig. 3  Comparison between DIA spectral libraries. The analysis of the vDIA data was carried out with three spectral libraries: a project specific, a 
urine reference library appended in Spectronaut and the pan human library. a Basic information of the spectral libraries: the number of proteins 
and peptides covered by the libraries and the MS instrument used for library generation. b Overlap of identified proteins depending on the spectral 
libraries. c, d Total number of identified proteins and peptides were plotted. The column is separated into proteins or peptides which were detected 
in common (dark blue) and those detected in only one or two of three replicates (gray). e, f Distribution of quantified proteins and peptides in each 
CV% levels
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of 6.7%, which is much better than regular DDA analy-
sis. All the results indicate the great potential of using 
resource spectral libraries for DIA data analysis. Usage of 
public available resource libraries will save great amount 
of MS time for generating internal specific library, which 
could be very attractive in future DIA data analysis.

Performance of the fast profiling workflow
The performance of the whole workflow including sam-
ple preparation and MS analysis was evaluated by anal-
ysis of three batches of a same urine samples. As show 
in Fig. 4a, 1025, 1010 and 1016 proteins were identified 
from each replicate, with 986 (95%) proteins identified 
in common. Figure  4b and Additional file  6: Figure S1 
show the response correlation of the quantified proteins 
between individual replicates. The average correlation 
coefficient was 0.992, suggesting that our workflow has a 
good quantification precision (The result in peptide level 
are appended in Additional file 7: Figure S2). CV of pro-
tein intensity of three replicates were calculated and the 
median CV% was 9.1%, with 81% of proteins showing 
CVs of ≤ 20% (Fig. 4c).

Our integrated workflow enables reproducibly quan-
tification of 986 proteins with a 80 min single-shot DIA 

analysis. As illustrated in Fig.  4d, the dynamic range of 
quantified protein intensity cover nearly five orders of 
magnitude. Among them, uromodulin and albumin were 
the two most abundant proteins, and PERG-1 (Retinoic 
acid receptor responder protein 1) was the least abun-
dant one (Additional file 8: Table S6). The concentrations 
of some of the proteins were reported in the tens of pg/
mL level, such as Interleukin-1 receptor type 2 (110 pg/
mL), 60  kDa heat shock protein (90  pg/mL) and frac-
talkine (40 pg/mL) [41].

GO analysis was performed to provide insight into 
the cellular component of the quantified proteins. As 
illustrated in Fig.  4e, GO terms related to extracellu-
lar proteins (such as extracellular exosome, extracellu-
lar space and extracellular region), plasma membrane 
and cytosol were most overrepresented, which was 
consistent with recent large-scale urinary proteomic 
studies [18, 42, 43]. As urine is a glomerular filtrate of 
plasma, we compared our urinary proteome data with 
a recently reported plasma proteome data to check 
how many plasma-related proteins could be detected in 
urine. The plasma proteome dataset has a comparable 
detection depth of 1040 proteins and was reported by 
Mann’s group through extensive peptide fractionation 

Fig. 4  Performance of the urinary proteome profiling workflow. a Identification reproducibility of the entire workflow. b Correlation of the 
quantified protein intensities between replicate 1 and 3. Correlation of the protein intensities between replicate 1 and 2, and replicate 2 and 3 
were appended in Additional file 4: Figure S1. c Quantification precision of the workflow. d Abundance distribution of the quantified proteins. 
Some disease-related biomarkers with known urinary concentration as reported form previous immunoassay screening are labeled [41]. GSTA2 
Glutathione S-transferase A2, NC1 Collagen alpha-1(XVIII) chain, IBP-6 Insulin-like growth factor-binding protein 6, IL-1R-2 Interleukin-1 receptor type 
2, Hsp60 60 kDa heat shock protein. e Top 20 of Gene Ontology enrichments for cellular component. f Comparative analysis of the urine and plasma 
proteome. The protein identifiers in different datasets were all converted to gene names for easier comparison



Page 8 of 12Lin et al. Clin Proteom           (2018) 15:42 

and 16 h of MS time [22]. As shown in Fig. 4f, a total 
of 393 (41.5%) of the proteins identified in the deep 
plasma proteome were common to the proteins quanti-
fied by our fast urinary proteome profiling (40.6%). This 
result was largely consistent with previous report that 
approximately one-third of urinary proteins originate 
from the plasma proteins [44]. We further searched 
for the presence of approved blood biomarkers in our 
urinary proteome dataset. Among the 109 Food and 
Drug Administration (FDA) approved blood biomark-
ers [45], 53 (~ 50%) of them were reproducibly quan-
tified in our list (Additional file  8: Table  S6). As urine 
can be obtained in a more convenient and non-invasive 
way compared with blood, it would be significant if 
these blood biomarkers could be confirmed as urinary 
biomarkers. In addition, as a biofluid closest to kidney, 
urine was thought to contain rich information which 
could reflect kidney function and an ideal source for 
discovering kidney disease biomarkers. Lately, Gao’s 
group reviewed 38 reported urinary candidate bio-
markers of glomerular and tubular injury [18]. As 
indicated in Table  S4, 25 of those biomarkers can be 
detected in our list. All the above results indicate the 
great potential of our fast urinary proteomic profiling 
in disease relevant biomarker detection.

High‑throughput urinary proteome profiling of KC
After establishing the optimized workflow, we applied 
it to a urine proteomic study of KC. Twenty-one KC 
patients and 22 healthy controls were involved in the 
study. After processed using our centrifuge-based 
approach, a total of 43 samples were measured by our 
urine specific DIA method within 3  days. An average 
of 942 protein groups and 4632 peptides per sample 
(Fig.  5a) were detected, and 1163 protein groups and 
7361 peptides were detected in total from 43 samples. 
We further calculated the frequency of protein detection 
(Fig. 5b). 485 proteins (~ 42% of the all) were detected in 
common in all the 43 samples, 807 proteins (~ 70%) in 
most (> 80%) of the samples, and only 3 proteins (0.3%) 
detected individually in one sample. The result indicated 
the accepted stability and reproducibility of our work-
flow in large scale urine proteome profiling. Student’s 
t test was applied to detect the disease related potential 
markers. As indicated in the volcano plot (Fig.  5c), 125 
proteins were found differentially expressed between KC 
patients and controls (p value < 0.05 and Fold change 
> 1.5). Among them, 85 proteins were significantly down-
regulated in KC patients, while 40 proteins were sig-
nificantly up-regulated. Detailed information of these 
changed proteins is provided in the Additional file  9: 
Table S7.

Discussion
Many efforts have been made to characterize more uri-
nary proteins in recent years, but few have focused on 
the analysis throughput and detection reproducibility. 
In this study, we aim to develop a fast and robust uri-
nary proteome profiling platform that can be applied in 
large-scale clinical detection. We reasoned that the entire 
process of such a platform, including sample prepara-
tion, MS acquisition and data analysis, ought to be fast, 
reproducible and convenient. In this regard, sample 
preparation processes were tried to be simplified and 
pre-fractionation procedures were overleaped. Accord-
ing to the characteristics of urine samples, a centrifuge-
based protocol, which combined ultrafiltration and the 
SISPROT technology, was developed for urine sample 
processing. Starting with 2  mL of neat urine, the entire 
sample preparation process takes less than 3 h and allows 
multiplexing on standard centrifuges. For MS analysis, 
a urine specific vDIA method of 80  min gradient was 
developed (~ 15 samples per day). The acquired DIA 
data was subsequently analyzed with commercial avail-
able Spectronaut software. The whole workflow takes less 
than 5  h (Fig.  1). The performance of the whole work-
flow was evaluated, and both the detection reproducibil-
ity and quantitative precision were found excellent. It is 
noteworthy that the quantification precision of a < 10% 
median CV of the workflow is much smaller than the bio-
logical CV (reported as 60–70%) [46], which allows us to 
omit technical replicates for both sample preparation and 
MS acquisition, and to focus on other biological samples, 
which greatly improves the analysis throughput.

The high throughput workflow allows quantitative 
analysis of ~ 1000 proteins in single urine sample, which 
covers low abundance urinary proteins with reported 
concentration in the pg/mL level. It is worth mentioning 
that, comparing with plasma, urine is easier to be pro-
filed to a relatively deep protein depth. With our study, 
over one thousand proteins can be detected with 80 min 
of MS time. But for plasma proteome, due to the negative 
effects of high abundance blood proteins, a comparable 
detection depth can only be obtained through extensive 
peptide fractionation and consuming more than 10  h 
of MS time. It could be a distinct advantage of urine 
over blood as a non-invasive biofluid in future clinical 
proteomics.

The workflow was further applied in a proof-of-con-
cept urine proteome study of KC. During the analysis of 
a total of 43 samples, the workflow presented satisfac-
tory stability and reproducibility in protein detection. 
125 proteins were found differentially expressed between 
the KC patients and healthy controls. Some of the pro-
teins have been detected as potential biomarkers for KC 
or associated with tumor growth and proliferation in 
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previous studies, such as Multimerin-2 [47, 48], trans-
membrane protein 106A [49, 50], apolipoprotein D [51], 
vasorin [52], ras-related protein Rab-14 [53], retinol-
binding proteins 5 [54], neuronal growth regulator 1 [55] 
and prolactin-inducible protein [56, 57].

However, these significantly changed proteins can’t yet 
be treated as potential biomarkers for KC in current pre-
liminary study. Due to the unique characteristics of urine, 
such as high inter-individual variability and susceptibility 
to various condition of the urinary system, larger sam-
ple cohorts and patients with non-malignant kidney dis-
ease controls are needed in a comprehensive discovery 
study to obtain more conclusive result. Another problem 

with current MS-based biomarker discovery studies on 
urine is that there is a lack of consistency in normaliza-
tion of protein concentration. In this study, to correct 
for the different dilution factors among urine samples, 
same protein amount were used for digestion for differ-
ent samples. The potential problem with this widely used 
total protein normalization strategy is that samples with 
proteinuria or hematuria could weaken the differences 
in biomarker levels between the patients and controls 
[58]. Urinary creatinine-based normalization is another 
widely applied strategy. The potential problem with the 
strategy is that the excretion of creatinine is susceptible 
to renal function, muscle mass and metabolism, and can 

Fig. 5  High-throughput urinary proteome profiling of KC. a Number of detected proteins and peptides in each urinary sample. b Percentage of 
detected proteins in all the 43 samples, in 35–42, in 22–35, in 2–21 samples or in only one sample. c Volcano plot of protein abundance changes 
between KC patients and controls. Significantly changed proteins are labelled in orange
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be dependent on exogenous factors such as age, gender 
and mental state [59]. Further studies needed to be car-
ried out to compare those normalization methods. Due 
to the limit of current sample size and significantly more 
effort for developing commonly accepted normalization 
method, such comprehensive study on KC is out of the 
scope of this study and will be carried out in our future 
study. However, the current proof-of-concept study sug-
gested the feasibility of our workflow in extensive urine 
proteome profiling and clinical relevant biomarker 
discovery.

Conclusions
In this study, we develop a fast and robust workflow for 
streamlined urinary proteome analysis. The workflow 
integrate highly efficient centrifuge-based sample prepa-
ration technology and urinary specific DIA approach, 
that enables reproducibly quantification of ~ 1000 pro-
teins with 80  min MS time. Compared to the standard 
DDA strategy, our DIA method quantified 2.1 times 
peptides and 2.5 times proteins with better quantita-
tion precision. In addition, we evaluated the feasibility of 
using resource libraries for DIA data analysis. Although 
the overall performance of the public resource libraries 
is still not as good as that of project specific library, they 
present great potential to be used in future data analysis. 
The workflow was subsequently applied to a urine prot-
eomic study of KC. A total of 43 samples were analyzed 
by the integrated workflow within 3  days. 125 proteins 
were found differentially expressed in KC patients. The 
result suggested the feasibility of applying the workflow 
in extensive urinary proteome profiling and clinical rel-
evant biomarker discovery.
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