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Biomarkers of blood cadmium and incidence 
of cardiovascular events in non‑smokers: results 
from a population‑based proteomics study
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Abstract 

Background:  Cadmium is a toxic metal with multiple adverse health effects, including risk of cardiovascular disease 
(CVD). The mechanistic link between cadmium and CVD is unclear. Our aim was to examine the associations between 
blood cadmium (B-Cd) and 88 potential protein biomarkers of CVD.

Methods:  B-Cd and 88 plasma proteins were measured in a community-based prospective cohort, the Malmö 
Diet and Cancer study. The primary analysis was performed in never smokers (n = 1725). Multiple linear regression 
was used with adjustments for age and sex, and correction for multiple comparisons using the false discovery rate 
method. Proteins significantly associated with B-Cd were replicated in long-term former smokers (n = 782). Significant 
proteins were then studied in relation to incidence of CVD (i.e., coronary events or ischemic stroke) in never smokers.

Results:  Fifteen proteins were associated with B-Cd in never smokers. Eight of them were replicated in long-term for‑
mer smokers. Kidney injury molecule-1, fibroblast growth factor-23 (FGF23), tumor necrosis factor receptor-2, matrix 
metalloproteinase-12, cathepsin L1, urokinase plasminogen activator receptor, C-C motif chemokine-3 (CCL3), and 
chemokine (C-X3-C motif ) ligand-1 were associated with B-Cd both in never smokers and long-term former smokers. 
Except for CCL3 and FGF23, these proteins were also significantly associated with incidence of CVD.

Conclusions:  B-Cd in non-smokers was associated with eight potential plasma biomarkers of CVD and kidney injury. 
The results suggest pathways for the associations between B-Cd and CVD and kidney injury.
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Background
Cadmium is a toxic non-essential metal with multiple 
adverse health effects [1]. The main sources of cadmium 
are tobacco smoking and diets containing grains and 
vegetables from contaminated soils [2]. Cadmium con-
centrations are often several-fold higher in smokers com-
pared to non-smokers. In humans, cadmium accumulates 
mainly in the kidneys (about 50%), liver (15%) and muscle 
(20%) [1, 2]. High concentrations are also found in eryth-
rocytes and concentrations in plasma are very low. There 

is no efficient excretion mechanism of cadmium; only 
small amounts are excreted in urine. Elimination is there-
fore very slow with a half-life of 10–30  years [2]. Blood 
cadmium (B-Cd) is considered as a valid measure of body 
burden of cadmium during steady state.

It is well established that exposure to high concentra-
tions of cadmium can cause kidney injury [1, 3]. Sev-
eral studies suggest that cadmium also could cause 
atherosclerosis and cardiovascular diseases (CVD). 
Studies from the Strong Heart Study and the National 
Health and Nutrition Examination Study (NHANES) 
have shown associations between blood or urine cad-
mium and CVD or cardiovascular death [4–6]. We have 
recently shown similar relationships for B-Cd in cross-
sectional and prospective studies of the Malmö Diet and 
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Cancer-cardiovascular cohort (MDC-CC) in Sweden 
[7–9]. In these studies, B-Cd has been associated with 
prevalence of carotid plaque and increased incidence 
of coronary events and stroke. Both in US and Sweden, 
the increased cardiovascular risk has been observed for 
individuals in the top 20–25% of the distribution of B-Cd 
concentrations, i.e., above 0.5 µg/L [4, 7, 10].

The causal link between B-Cd and CVD is unclear at 
present. However, it has been proposed that cadmium 
has proinflammatory effects [11, 12] and that cadmium 
could inhibit proliferation of vascular smooth muscle 
cells [13]. Experimental studies have reported increased 
apoptosis and increased expression of proteolytic 
enzymes in endothelial cells exposed to cadmium [14, 
15].

In order to search for possible mechanisms linking 
cadmium exposure to CVD, our aim was to examine the 
relationship between B-Cd and a panel of circulating pro-
teins known or suggested to be related to CVD pathol-
ogy. Smoking is a major source of cadmium and B-Cd 
concentrations are often several-fold increased in smok-
ers [2]. It is also well known that smoking has very strong 
effects on the plasma protein concentrations [16]. We 
therefore excluded smokers to eliminate the confound-
ing effects of smoking from the analysis. The relationship 
between B-Cd and protein biomarkers was explored in 
life-long never smokers from the MDC-CC, and signifi-
cant findings were replicated in former smokers who had 
been smoke-free for 15  years or more. For plasma pro-
teins significantly associated with B-Cd both in never 
smokers and long-term former smokers, we also explored 
their associations with incidence of CVD.

Methods
The MDC cohort
During 1991 and 1996, all men and women in the city 
of Malmö, Sweden, born between 1923 and 1950, were 
invited to participate in the MDC (participation rate was 
41%), which included a health examination at a screen-
ing center [17]. During 1991–1994, a random 50% of the 
participants in the MDC were included in a cardiovascu-
lar sub-study (MDC-CC) (n = 6103) [7, 18]. Blood sam-
ples were taken and erythrocytes were stored in − 80 °C 
until analysis [19]. Smoking habits were assessed in a self-
administrated questionnaire. Fiber intake was assessed 
using a 168-item food frequency questionnaire, a 7-day 
food diary and a 1-h diet interview.

Cadmium was analyzed in erythrocytes using induc-
tively coupled plasma mass spectrometry operating in 
the helium collision cell mode [7, 9]. The imprecision 
was 9.6%, calculated as the coefficient of variation for 
50 duplicate samples (mean 0.43  µg/L). The detection 

limit was 0.02 µg/L. B-Cd was calculated by multiplying 
erythrocyte cadmium with hematocrit.

Information about plasma proteins was available 
in 4742 participants and of those, 4232 had data on 
plasma proteins and B-Cd. Out of these 1725 were 
never smokers and 1414 were long-term former smok-
ers. Never smokers were used for primary analysis. Of 
the long-term former smokers, 782 had been smoke-
free for 15  years or more and this group was used to 
replicate significant findings from the analysis of never 
smokers. The rationale for selecting this group was that 
a long abstinence is needed for cadmium levels and 
inflammatory markers to be reduced after smoking 
cessation [20]. By using this approach, we minimized 
the proinflammatory effect remaining after smoking 
cessation.

Ninety-two human protein biomarkers have been 
measured using Proseek Multiplex CVD I 96 × 96 Kit 
(Olink Bioscience, Uppsala, Sweden) based on the 
Proximity Extension Assay technology with the Flui-
digm BioMark HD real-time PCR platform in 54 chip 
runs [21]. The output unit is presented as normalized 
protein expression (NPX) arbitrary units (AU) on a 
log2 scale. Limit of detection (LOD) is defined as 3× 
standard deviations (SD) above background based on 
the negative controls in each run. Intra- and inter-assay 
coefficients of variation for the various proteins are 
presented on www.olink​.se [21].

We excluded samples not passing the internal qual-
ity control for the biomarker analysis (n = 123). We 
also excluded four proteins, for which less than 75% of 
subjects had a valid measurement: beta-nerve growth 
factor (Beta-NGF); Extracellular Newly Identified 
RAGE-Binding (EN-RAGE); B-type natriuretic peptide 
(BNP); Interleukin-4 (IL4). Hence, there was informa-
tion of 88 proteins (Fig. 1). The individuals with protein 
values below the LOD were replaced with LOD/2.

Incidence of CVD includes coronary event and 
ischemic stroke. An ischemic stroke diagnosis was 
defined as codes 434 or I63, according to the Inter-
national Classification of Diseases (ICD), 9th or 10th 
revision, respectively. A coronary event was defined as 
a fatal or non-fatal myocardial infarction (ICD-9 and 
ICD-10 codes 410 and I21, respectively) or death due to 
ischemic heart disease (codes 411, 412 and 414 (ICD-
9) or I22-I25 (ICD-10). Never smokers without history 
of stroke or coronary events (n = 1705) were followed 
from the baseline examination until incident first-onset 
of ischemic stroke or coronary event, emigration from 
Sweden, death or December 31st, 2014, whichever 
came first. The Swedish Hospital Discharge Register 
(SHDR) and the Swedish Cause of Death Register were 
used.

http://www.olink.se
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Statistics
Multiple linear regressions were performed (one pro-
tein at a time), with B-Cd, age and sex as independent 
variables, and protein level as dependent variable. All 
proteins were standardized before analysis (mean = 0, 
SD = 1), to facilitate comparisons between proteins. The 
results are presented as beta coefficients (95% confidence 
interval (CI)) and represent the increase in SD of the log 
transformed protein level per 1 µg/L increment of B-Cd. 
The primary analysis was performed in never smokers 
(n = 1725). Associations passing the correction for mul-
tiple comparisons (false discovery rate, FDR q < 10%) 
in never smokers were replicated in long-term former 
smokers (n = 782). For proteins that were replicated in 
long-term former smokers, we also adjusted for intake of 
fiber in a sensitivity analysis, since fiber is an important 
source of dietary cadmium. A p value < 0.05 was consid-
ered as statistically significant. Cox’ proportional hazard 
regression was used to assess the association of baseline 

proteins with incident CVD. Hazard ratios (HR) and cor-
responding 95% CIs were calculated per 1 SD increment 
of protein biomarkers.

IBM SPSS version 22 (IBM Corp.) or Stata software 
version 12.0 (StataCorp) was used for analyses.

Results
The characteristics of the study samples are presented in 
Table 1. The range of B-Cd in never smokers was 0.02–
2.31  µg/L. B-Cd (µg/L) (median 0.20, mean 0.23, SD 
0.16) was similar in never smokers and long-term former 
smokers.

Cadmium and protein biomarkers in never smokers
Twenty proteins were significantly associated with B-Cd 
in never smokers (p < 0.05) (Table 2). B-Cd was inversely 
associated with four proteins and positively associated 
with 16 proteins. Fibroblast growth factor 23 (FGF-23) 
had the strongest association with B-Cd (beta coefficient: 

88 proteins and 4742 subjects in the MDC-CC cohort 

Values below the lower limit of detection (LOD) replaced with LOD/2

Samples not passing the internal quality 
control for the biomarker analysis (n=123); 
Four proteins with < 75% of subjects having a 
valid measurement of protein:
Beta-NGF (n=479); EN-RAGE (n=128); BNP 
(n=698); IL4 (n=30).

Associations with a false discovery value (FDR<10%) in never smoker were 
replicated in 782 long-term former smokers.

92 human protein biomarkers in 4860 subjects
using Proseek Multiplex CVD 1. 
Measurements were performed in 54 chips. 

Primary analysis in 1725 never smokers  

Fig. 1  Flow chart
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0.66, 95% CI: 0.37–0.94, p = 5.0 × 10−6), Fig. 2. Of the 20 
proteins with p < 0.05, 15 proteins passed the threshold 
for multiple testing and were also tested in long-term for-
mer smoker.

Cadmium and protein biomarkers in long‑term former 
smokers
Of the 15 proteins, eight (kidney injury molecule-1 (KIM-
1), FGF-23, tumor necrosis factor receptor-2 (TNFR2), 

Table 1  The characteristics of the study samples and excluded individuals

Values expressed are means (±SD) or percentages unless specified elsewise

B-Cd blood cadmium, BMI body mass index, LDL low-density lipoprotein, HDL high density lipoprotein, hsCRP high-sensitive C-reactive protein
a  Median (25–75%)

Never smokers (n = 1725) Long-term former smokers 
(n = 782)

Excluded current 
smokers (n = 1088)

B-Cd (µg/L) mean (SD)/median 0.23 (0.16)/0.20 0.23 (0.16)/0.20 1.04 (0.71)/0.90

Age (years) 58.0 (5.8) 58.1 (5.9) 56.2 (5.8)

Sex (male, n, %) 497 (28.8) 399 (51.1) 440 (40.4)

Diabetes mellitus [n (%)] 113 (6.6) 67 (8.6) 74 (6.8)

BMI (kg/m2) 25.7 (3.9) 26.0 (3.8) 24.8 (3.9)

LDL (mmol/L) 4.21 (0.98) 4.12 (0.95) 4.18 (0.99)

HDL (mmol/L) 1.43 (0.37) 1.39 (0.37) 1.36 (0.37)

hsCRP (mg/L)a 1.20 (0.6–2.4) 1.20 (0.6–2.3) 1.60 (0.8–3.4)

Anemic status (n, %) 45 (2.6) 20 (2.6) 20 (1.8)

Systolic blood pressure (mmHg) 141 (18.5) 141 (17.7) 138 (19.1)

Low education [n (%)] 765 (44.3) 374 (42.9) 517 (47.6)

Dietary intake of fiber (g/day)a 20.4 (16.6–25.0) 21.4 (17.0–26.3) 18.6 (14.7–23.6)

Table 2  Association between cadmium in blood and circulating proteins in never smokers and results from replication 
in long term former smokers

95% L and 95% H indicate confidence limits for Beta

Protein Never smokers (n = 1725) Long-term former smokers (n = 782)

Beta 95% L 95% H P Beta 95% L 95% H P

EGF − 0.37 − 0.65 − 0.09 0.010 − 0.04 − 0.50 0.41 0.852

HSP27 − 0.37 − 0.66 − 0.08 0.013 0.09 − 0.37 0.56 0.690

mAmP − 0.32 − 0.60 − 0.03 0.031

GH − 0.27 − 0.51 − 0.03 0.028

GDF15 0.25 0.01 0.50 0.047

ST2 0.30 0.01 0.58 0.041

TRAIL 0.32 0.02 0.61 0.036

MMP12 0.32 0.06 0.57 0.017 0.56 0.17 0.95 0.005

SPON1 0.35 0.07 0.63 0.014 0.19 − 0.24 0.62 0.380

UPAR 0.36 0.09 0.62 0.009 0.44 0.04 0.83 0.031

KLK6 0.37 0.08 0.67 0.013 0.36 − 0.08 0.79 0.108

CCL3 0.38 0.10 0.66 0.009 0.43 0.01 0.85 0.044

TNFR1 0.38 0.09 0.67 0.010 0.37 − 0.06 0.80 0.087

CTSL1 0.39 0.10 0.67 0.008 0.57 0.15 0.99 0.008

CX3CL1 0.43 0.13 0.73 0.005 0.45 0.01 0.88 0.044

PAPPA 0.44 0.17 0.72 0.001 0.12 − 0.30 0.53 0.584

TNFR2 0.45 0.16 0.73 0.002 0.52 0.09 0.94 0.017

KIM-1 0.45 0.18 0.73 0.001 0.78 0.36 1.20 3.2 × 10−4

IL27A 0.46 0.17 0.75 0.002 0.38 − 0.05 0.80 0.082

FGF23 0.66 0.37 0.94 5.0 × 10−6 0.71 0.29 1.13 0.001
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matrix metalloproteinase-12 (MMP-12), cathepsin L1, 
urokinase plasminogen activator receptor (UPAR), C-C 
motif chemokine-3 (CCL3), and chemokine C-X3-C 
motif (CX3CL1) were significantly associated with B-Cd 
(Table  2; Fig.  3). KIM-1 was found to have the strong-
est association with B-Cd (beta coefficient: 0.78, 95% CI: 
0.36–1.20, p = 3.2 × 10−4), Fig.  3. We also adjusted the 
results for fiber intake, since fiber is an important source 
of dietary cadmium. The relationships between B-Cd and 
the eight proteins were still significant, except for CCL3, 
which became non-significant after adjustment for fiber 
intake.

Cadmium, protein biomarkers and incidence of CVD 
in never smokers
Eight proteins (KIM-1, FGF-23, TNFR2, MMP-12, cath-
epsin L1, UPAR, CCL3, and CX3CL1) were significantly 
associated with B-Cd both in never and long-term for-
mer smokers. These proteins were explored for their rela-
tionship with incidence of CVD (Table 3).

There were 224 incident events of CVD in 1705 never 
smokers (13.1%) during a mean follow up of 19.4 (SD: 
4.6) years. All eight proteins were associated with an 
increased risk for CVD after adjustments for age and 
sex. The increased risk remained significant for KIM-
1, UPAR, MMP12, cathepsin L1, TNFR2, and CX3CL1 
after adjustments for cardiovascular risk factors (i.e., 
diabetes, systolic blood pressure, blood lipids, use of 
blood pressure or lipid-lowering medications and waist 
circumference).

Discussion
Several studies from the recent years suggest that cad-
mium could cause atherosclerosis and CVD. However, 
the mechanistic link between cadmium and CVD is 
unclear. Cadmium has been associated with inflamma-
tion [11, 12, 22], inhibition of vascular cell proliferation 
[13], as well as apoptosis, necrosis [23] and increased 
expression of proteolytic enzymes, all of which could 
contribute to increased cardiovascular risk. Proteomics is 
a feasible method to identify biomarkers that are affected 
by the exposure of cadmium. The present study identi-
fied eight plasma proteins that were increased in never 
smokers and long-term former smokers with raised B-Cd 
levels. Six of them were also associated with increased 
incidence of CVD after adjustments for several risk fac-
tors. The results suggest that these proteins could be 
related to the pathogenic pathways linking cadmium to 
CVD.

Atherosclerosis is the underlying primary patho-
logical process of CVD. Atherosclerotic plaques with 
a vulnerable phenotype are the plaques causing clini-
cal events [24]. An accumulating body of data indicates 
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that cadmium exposure is associated with the develop-
ment and growth of atherosclerotic plaques [9] and the 
process leading to plaque rupture, myocardial infarc-
tion and ischemic stroke [7, 10, 24]. It has been shown 
that the cadmium content in symptomatic carotid ath-
erosclerotic plaques is 50-fold higher than in blood [14]. 
Inflammation is a key mechanism in the atheroscle-
rotic process and data indicate that cadmium is asso-
ciated with the density of inflammatory macrophages 

in rupture-prone parts of human symptomatic carotid 
plaques [24]. CX3CL1, also known as fractalkine, ini-
tiates recruitment of monocytes in the atherosclerotic 
plaque and has been associated with plaque rupture, 
unstable angina pectoris and atherosclerosis at all 
stages [25, 26]. Hence, CX3CL1 could potentially be a 
mediator of the adverse effects of cadmium.

Cathepsin L1 is another biomarker associated with 
cadmium as well as incidence of cardiovascular events. 
Cathepsin L1 is a proteolytic enzyme which could 
degrade components of the extracellular matrix, such 
as elastin and type 1 and 2 collagen [27]. Cathepsin 
L1 has been shown associated with atherosclerotic 
plaques and plaque instability [28]. A study of vulner-
able carotid plaque reported significantly higher cath-
epsin L concentrations in the upstream area where 
plaque rupture occurs most [29]. In a cohort of older 
adults, a significant association between cathepsin L1 
and cardiovascular mortality was reported [30]. Our 
results indicate that cadmium exposure is associated 
with increased cathepsin L1 in plasma, which in turn 
could increase risk of plaque rupture and CVD.

UPAR was significantly associated with cadmium in 
this study. UPAR is a membrane-bound protein that is 
highly expressed in macrophages in symptomatic ath-
erosclerotic plaques and is associated with fibrinolysis, 
cell migration, and matrix degeneration [31, 32]. It is 
also released from the cell surface into blood in a sol-
uble form. In the present cohort the soluble form was 
found to be associated with B-Cd in never-smokers 
and with increased risk for carotid plaques and CVD 
[33, 34]. Soluble UPAR was measured by ELISA in 
those studies. Hence, the finding in the present study 
of a positive association between blood cadmium and 
UPAR has been corroborated by previous studies using 
a different technique. We are not aware of any animal 
experiments of cadmium exposure and its effect on 
plasma UPAR. However, a study of gastric cancer cells 
reported that cadmium induced increased expression 
of UPAR [35].

Cadmium has been demonstrated causing endothelial 
cell death and disruption of the functional integrity of 
the endothelium [14]. The permeability of the endothe-
lium increases and blood vessels could therefore be more 
susceptible to lipid accumulation and inflammation [23]. 
MMP12, a member of matrix metalloproteinases family, 
has significant elastolytic activity, and has been linked 
to large artery stroke [36] as well as aortic abdomi-
nal aneurysms [37], and these outcomes have also been 
associated with raised B-Cd [7, 10, 38]. The proteolytic 
activity of MMP12 could further decrease the integrity 
of the endothelium and increase the risk of atheroscle-
rosis and plaque rupture. To our best knowledge, there 
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Fig. 3  Associations between blood cadmium and circulating 
proteins in former smokers (n = 782)

Table 3  Hazards ratio (HR) for  incident CVD (n = 224, 
13.1%) in  1705 never smokers, expressed per  1 SD 
increment of protein biomarkers

a  Model 1: adjusted for age and sex. Hazard ratios (95% confidence interval) in 
all models
b  Model 2: adjusted for age, sex, diabetes, systolic blood pressure, HDL, LDL, use 
of blood pressure, use of lipid-lowering drugs, and waist circumference

Protein Model 1a P Model 2b P

KIM-1 1.29 (1.12–1.48) < 0.001 1.16 (1.01–1.34) 0.033

FGF23 1.18 (1.03–1.36) 0.015 1.10 (0.96–1.27) 0.177

MMP12 1.29 (1.12–1.49) < 0.001 1.23 (1.06–1.43) 0.006

CTSL1 1.28 (1.11–1.47) 0.001 1.22 (1.05–1.41) 0.007

TNFR2 1.25 (1.09–1.44) 0.001 1.16 (1.01–1.34) 0.036

UPAR 1.32 (1.14–1.54) < 0.001 1.26 (1.08–1.47) 0.003

CCL3 1.15 (1.01–1.30) 0.037 1.06 (0.92–1.22) 0.441

CX3CL1 1.14 (1.01–1.30) 0.046 1.17 (1.02–1.33) 0.021
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are no published data of associations between B-Cd and 
MMP12 in plasma.

A major proportion of cadmium in humans accumu-
lates in the kidneys and it is well known that cadmium 
has adverse tubulointerstitial and glomerular effects. 
Several of the significant findings in this study were for 
biomarkers that previously have been related to renal 
diseases. For example, KIM-1 is considered as a sen-
sitive and specific marker for renal proximal tubule 
damage [39]. A study of a population exposed to high 
cadmium concentrations reported significant relation-
ships between urinary KIM-1 and cadmium in blood 
or urine [40] and urinary cadmium was correlated with 
urinary KIM-1 in a study of 109 kidney donors [41]. 
The relationship between cadmium and urinary KIM-1 
is also reported from experimental studies of rats [42, 
43]. To our knowledge, there are no previous studies of 
blood cadmium and plasma KIM-1 in humans. KIM-1 
was also associated with incidence of CVD in this study. 
Hypothetically, this could be explained by increased risk 
of developing chronic kidney disease. Alternatively, the 
increased risk of CVD could be related to the effects of 
KIM-1 on immune cell activation [44].

FGF23 is a regulator of phosphate homeostasis, which 
inhibits renal tubular phosphate transport [45, 46]. It has 
been proposed that FGF23 may be responsible for the 
phosphaturic actions of cadmium [47]. Cross-sectional 
and population-based prospective studies have showed 
that FGF23 is a risk factor for low renal function and inci-
dent chronic kidney disease [48, 49]. B-Cd was signifi-
cantly associated with FGF23 both in the never smokers 
and the long-term former smokers. Our results are sup-
ported by experimental studies of mice, which showed 
that administration of cadmium is followed by increased 
plasma FGF23 [47]. Altogether, the results from this 
study indicate that cadmium could have adverse effects 
on kidney function even in non-smokers with very low 
cadmium concentrations.

Strengths and limitations
Our study used a proteomics approach with 88 circu-
lating proteins and B-Cd levels from a well-established 
community-based cohort. Proteins with significant rela-
tionships in both the never smokers and the long-term 
former smokers were tested with respect to incidence 
of CVD. Smokers often have several-fold increased cad-
mium levels, compared to non-smokers. Smoking is 
also a major cause of raised inflammatory proteins and a 
major risk factor for CVD. The fact that the study sample 
was a cohort of never smokers, with replication in long-
term former smokers, is a major strength of this study. 
The long-term former smokers had been smoke free for 
more than 15 years, and the pro-inflammatory effects of 

smoking should be substantially reduced after this time. 
The B-Cd levels were similar in the never smokers and 
the long-term former smokers.

The concentrations of B-Cd are comparable to other 
results from other Swedish cohorts [24, 50], but the mean 
values and range of B-Cd will obviously be lower when 
smokers are excluded. However, B-Cd was significantly 
associated with several plasma proteins, even though the 
concentrations were low. Hence, cadmium seems to have 
adverse health effects even at low concentrations [50].

Even though a wide range of plasma proteins were ana-
lyzed in this study, there are still many plasma proteins 
that potentially could mediate the effects of cadmium. 
Hence, more studies are needed to explore the effects of 
cadmium on the proteome. The proteins were presented 
as arbitrary units, based on real-time PCR quantification 
cycles. Hence, the relative concentrations were deter-
mined, but not the absolute values. This is a limitation of 
the study. However, the study cohort is from the general 
population and the distributions of proteins could there-
fore, by definition, be regarded as normal.

Conclusions
We identified eight potential biomarkers of CVD and 
kidney injury associated with B-Cd. The results suggest 
pathways for the previously shown associations between 
cadmium exposure and incidence of cardiovascular dis-
ease and kidney injury.
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