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Abstract 

Background:  There is a need to demonstrate a proof of principle that proteomics has the capacity to analyze plasma 
from breast cancer versus other diseases and controls in a multisite clinical trial design. The peptides or proteins that 
show a high observation frequency, and/or precursor intensity, specific to breast cancer plasma might be discovered 
by comparison to other diseases and matched controls. The endogenous tryptic peptides of breast cancer plasma 
were compared to ovarian cancer, female normal, sepsis, heart attack, Alzheimer’s and multiple sclerosis along with 
the institution-matched normal and control samples collected directly onto ice.

Methods:  Endogenous tryptic peptides were extracted from individual breast cancer and control EDTA plasma sam‑
ples in a step gradient of acetonitrile, and collected over preparative C18 for LC–ESI–MS/MS with a set of LTQ XL linear 
quadrupole ion traps working together in parallel to randomly and independently sample clinical populations. The 
MS/MS spectra were fit to fully tryptic peptides or phosphopeptides within proteins using the X!TANDEM algorithm. 
The protein observation frequency was counted using the SEQUEST algorithm after selecting the single best charge 
state and peptide sequence for each MS/MS spectra. The observation frequency was subsequently tested by Chi 
Square analysis. The log10 precursor intensity was compared by ANOVA in the R statistical system.

Results:  Peptides and/or phosphopeptides of common plasma proteins such as APOE, C4A, C4B, C3, APOA1, APOC2, 
APOC4, ITIH3 and ITIH4 showed increased observation frequency and/or precursor intensity in breast cancer. Many 
cellular proteins also showed large changes in frequency by Chi Square (χ2 > 100, p < 0.0001) in the breast cancer 
samples such as CPEB1, LTBP4, HIF-1A, IGHE, RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, HIF1A, OCLN, EYA1, 
HLA-DRB1, LARS, PTPDC1, WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, 
TBX15, NR2C2, FLJ00045, PDLIM1, GALNT9, ASH2L, PPFIBP1, LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, SAT2, 
SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, DDX47, MREG, PTPRE, EMI‑
LIN1, DKFZp779G1236 and MAP3K8 among others. The protein gene symbols with large Chi Square values were 
significantly enriched in proteins that showed a complex set of previously established functional and structural 
relationships by STRING analysis. An increase in mean precursor intensity of peptides was observed for QSER1 as well 
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Introduction
Blood peptides
The endogenous peptides of human serum and plasma 
were first detected by highly sensitive MALDI [1–3]. The 
MALDI “patterns” formed by the ex  vivo degradation 
of the major peptides of human blood fluids have been 
compared using complex multivariate approaches [4–6]. 
It was suggested that pattern analysis of endo-proteinases 
or exo-peptidases would permit the diagnosis of cancer 
[7, 8]. However, there was no evidence that multivariate 
pattern analysis of the peptides or exo-peptidase activity 
will serve as a valid diagnostic [9]. Multivariate pattern 
analysis is prone to over-interpretation of laboratory or 
clinical experiments [10, 11]. Univariate ANOVA of the 
main feature(s) provided about the same statistical power 
as multivariate analysis [12]. The endogenous peptides of 
human blood were first identified by MS/MS fragmenta-
tion using MALDI-Qq-TOF and LC–ESI–MS/MS with 
an ion trap mass spectrometer, that showed excellent 
agreement with exogenous digestions, and the inten-
sity values compared by ANOVA [12, 13]. Random and 
independent sampling of the endogenous tryptic pep-
tides from clinical plasma samples revealed individual 
peptides or proteins that show significant variation by 
standard statistical methods such as the Chi Square test 
and ANOVA [12, 14–18]. Pre-analytical variation was 
exhaustively studied between fresh EDTA plasma sam-
ples on ice versus plasma samples degraded for various 
lengths of time to control for differences in sample han-
dling and storage. The observation frequency of peptides 
from many proteins may increase by on average twofold 
after incubation at room temperature [17–19] and indi-
cates that Complement C3 and C4B vary with time of 
incubation ex  vivo [17, 18] in agreement with previous 
results [12].

Sample preparation
The sensitive analysis of human blood fluids by LC–ESI–
MS/MS is dependent on effective fractionation strategies, 
such as partition chromatography or organic extraction, 

to relieve suppression and competition for ionization, 
resulting in high signal to noise ratios and thus low error 
rates of identification and quantification [20]. Without 
step wise sample partition only a few high abundance 
proteins may be observed from blood fluid [13, 21, 22]. 
In contrast, with sufficient sample preparation, low abun-
dance proteins of ≤ 1 ng/ml could be detected and quan-
tified in blood samples by mass spectrometry [22, 23]. 
Simple and single-use, i.e. disposable, preparative and 
analytical separation apparatus permits the identification 
and quantification of blood peptides and proteins with 
no possibility of cross contamination between patients 
that guarantees sampling is statistically independent 
[12, 13, 17, 22, 23]. Previously, the use of precipitation 
and selective extraction of the pellet [23–26] was shown 
to be superior to precipitation and analysis of the ACN 
supernatant [27], ultra-filtration, [28] albumin depletion 
chromatography [29] or C18 partition chromatography 
alone [13]. Precipitating all of the polypeptides with 90% 
ACN followed by step-wise extraction of the peptides 
with mixtures of organic solvent and water was the opti-
mal method to sensitively detect peptides from blood 
[21]. Here a step gradient of acetonitrile/water to extract 
200 µl of EDTA plasma for analysis by LC–ESI–MS/MS 
showed a high signal to noise ratio [21] and resulted in 
the confident identification of tryptic peptides [17] from 
breast cancer versus normal control samples.

Computation and statistics
Partition of each clinical sample into multiple sub-frac-
tions, that each must be randomly and independently 
sampled by analytical C18 LC–ESI–MS/MS provides sen-
sitivity [21] but also creates a large computational chal-
lenge. Previously the 32-bit computer power was lacking 
to identify and compare all the peptides and protein from 
thousands of LC–ESI–MS/MS recordings in a large mul-
tisite clinical experiment [30]. Here we show the MS/MS 
spectra from random and independent sampling of pep-
tides from 1508 LC–ESI–MS/MS experiments from mul-
tiple clinical treatments and sites may be fit to peptides 

as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, THOC1, ANXA4, DHDDS, SAT2, PTMA and FYCO1 among others. In 
contrast, the QSER1 peptide QPKVKAEPPPK was apparently specific to ovarian cancer.

Conclusion:  There was striking agreement between the breast cancer plasma peptides and proteins discovered by 
LC–ESI–MS/MS with previous biomarkers from tumors, cells lines or body fluids by genetic or biochemical methods. 
The results indicate that variation in plasma peptides from breast cancer versus ovarian cancer may be directly discov‑
ered by LC–ESI–MS/MS that will be a powerful tool for clinical research. It may be possible to use a battery of sensitive 
and robust linear quadrupole ion traps for random and independent sampling of plasma from a multisite clinical trial.

Keywords:  Human EDTA plasma, Organic extraction, Nano chromatography, Electrospray ionization tandem 
mass spectrometry, LC–ESI–MS/MS, Linear quadrupole ion trap, Discovery of variation, Breast cancer, Random and 
independent sampling, Chi Square test and ANOVA, SQL SERVER and R
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using a 64 bit server and then the observation frequency 
and precursor intensity compared across treatments 
using SQL SERVER/R that shows excellent data compres-
sion and relation [14, 17]. The protein p-values and FDR 
q-values were computed from organic extraction or chro-
matography of blood fluid and the peptide-to-protein 
distribution of the precursor ions of greater than ~ 10,000 
(E4) counts were compared to a null (i.e. known false 
positive) model of noise or computer generated random 
MS/MS spectra [15, 17, 31–34]. Peptides may be identi-
fied from the fit of MS/MS spectra to peptide sequences 
[35] that permits the accurate estimate of the type I error 
rate (p value) of protein identification that may be cor-
rected by the method Benjamini and Hochberg [36] to 
yield the FDR (q-value) [17, 21, 31]. The peptide fits may 
be filtered from redundant results to the single best fit of 
the peptide sequence and charge state using a complex 
key in SQL Server [17, 31, 37, 38]. Simulations using ran-
dom or noise MS/MS spectra distributions may be used 
to control the type I error of experimental MS/MS spec-
tra correlations to tryptic peptides [15–17, 31–34, 37]. 
The peptide and protein observation counts (frequency) 
may be analyzed using classical statistic methods such 
as Chi Square analysis [33, 39]. Log10 transformation of 
precursor intensity yields a normal distribution that per-
mits comparison of peptide and proteins expression lev-
els by ANOVA [15, 16]. The SQL Server system permits 
the direct interrogation of the related data by the open 
source R statistical system without proteomic-specific 
software packages. Here the use of SQL/R has permit-
ted the detailed statistical analysis of randomly and inde-
pendently sampled LC–ESI–MS/MS data from multiple 
hospitals in parallel that would be requisite for a multisite 
clinical trial [37, 39].

Cancer proteins in blood fluids
Markers of breast cancer [40] have been examined from 
nano vesicles [41] that may mediate tumor invasion 
[42], in proximal fluid [43, 44] or from serum or plasma 
[45–47]. Many non-specific, i.e. “common distress” or 
“acute phase” proteins have been detected to increase 
by the analysis of blood fluids such as amyloids, hapto-
globin, alpha 1 antitrypsin, clusterin, apolipoproteins, 
complement components, heat shock  proteins, fibrino-
gens, hemopexin, alpha 2 macroglobulin and others that 
may be of limited diagnostic value [20, 48, 49]. There is 
good evidence that cellular proteins may exist in circu-
lation, and even form supramolecular complexes with 
other molecules, in the blood [50]. Proteins and nucleic 
acids may be packaged in exosomes that are challeng-
ing to isolate [51, 52] and it appears that cellular pro-
teins may be secreted into circulation [50, 53, 54]. Here, 
the combination of step wise organic partition [21], 

random and independent sampling by nano electrospray 
LC–ESI–MS/MS [17], and 64 bit computation with SQL 
SERVER/R [14] permitted the sensitive detection of pep-
tides and/or phosphopeptides from human plasma. The 
variation in endogenous peptides within parent pro-
tein chains in computed complexes from breast cancer 
patients versus ovarian cancer and other disease and 
normal plasma were compared by the classical statistical 
approaches of the Chi Square test followed by univariate 
ANOVA [12, 15, 16].

Materials and methods
Materials
Anonymous human EDTA plasma with no identifying 
information from multiple disease and control popu-
lations were transported frozen and stored in a − 80 
ºC  freezer. Breast cancer vs ovarian cancer disease and 
matched normal female human EDTA plasma was 
obtained from the Ontario Tumor Bank of the Ontario 
Institute of Cancer Research, Toronto Ontario. Addi-
tional controls of heart attack (venous and arterial) and 
normal pre-operative orthopedic samples were from St. 
Joseph’s Hospital of McMaster University. ICU-Sepsis 
and ICU-Alone were obtained from St. Michael’s Hospi-
tal Toronto. Multiple sclerosis, Alzheimer’s dementia and 
normal controls were from Amsterdam University Medi-
cal  Center, Vrije Universiteit Amsterdam. In addition, 
EDTA plasma samples collected onto ice as a baseline 
degradation controls were obtained from IBBL Luxem-
bourg and stored freeze dried. The anonymous plasma 
samples with no identifying information from the mul-
tiple clinical locations were analyzed under the Ryer-
son Research Ethics Board Protocol REB 2015-207. C18 
zip tips were obtained from Millipore (Bedford, MA), 
C18 HPLC resin was from Agilent (Zorbax 300 SB-C18 
5-micron). Solvents were obtained from Caledon Labo-
ratories (Georgetown, Ontario, Canada). All other salts 
and reagents were obtained from Sigma-Aldrich-Fluka 
(St Louis, MO) except where indicated. The level of repli-
cation in the LC–ESI–MS-MS experiments was typically 
between 9 and 26 independent patient plasma samples 
for each disease and control.

Sample preparation
Human EDTA plasma samples (200 μl) were precipitated 
with 9 volumes of acetonitrile (90% ACN) [23], followed 
by the selective extraction of the pellet using a step gra-
dient to achieve selectivity across sub-fractions and thus 
greater sensitivity [21]. Disposable plastic 2  ml sample 
tubes and plastic pipette tips were used to handle sam-
ples. The acetonitrile suspension was separated with 
a centrifuge at 12,000 RCF for 5  min. The acetonitrile 
supernatant, that contains few peptides, was collected, 
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transferred to a fresh sample tube and dried in a rotary 
lyophilizer. The organic precipitate (pellet) that contains 
a much larger total amount of endogenous polypeptides 
[23] was manually re-suspended using a step gradient of 
increasing water content to yield 10 fractions from those 
soluble in 90% ACN to 10% ACN, followed by 100% H2O, 
and then 5% formic acid [21]. The step-wise extracts were 
clarified with a centrifuge at 12,000 RCF for 5 min. The 
extracted sample fractions were dried under vacuum in 
a rotary lyophillizer and stored at − 80 °C for subsequent 
analysis.

Preparative C18 chromatography
The peptides of EDTA plasma were precipitated in ACN, 
extracted from the pellet in a step-gradient with increas-
ing water, dried and then collected over C18 preparative 
partition chromatography. Preparative C18 separation 
provided the best results for peptide and phosphopeptide 
analysis in a “blind” analysis [55]. Solid phase extraction 
with C18 for LC–ESI–MS/MS was performed as previ-
ously described [12, 13, 22–24]. The C18 chromatog-
raphy resin (Zip Tip) was wet with 65% acetonitrile and 
5% formic acid before equilibration in water with 5% for-
mic acid. The plasma extract was dissolved in 200  μl of 
5% formic acid in water for C18 binding. The resin was 
washed with at least five volumes of the binding buffer. 
The resin was eluted with ≥ 3 column volumes of 65% 
acetonitrile (2  µl) in 5% formic acid. In order to avoid 
cross-contamination the preparative C18 resin was dis-
carded after a single use.

LC–ESI–MS/MS
In order to entirely prevent any possibility of cross con-
tamination, a new disposable nano analytical HPLC 
column and nano emitter was fabricated for record-
ing each patient sample-fraction set. The ion traps were 
cleaned and tested for sensitivity with angiotensin and 
glu fibrinogen prior to recordings. The new column was 
conditioned and quality controlled with a mixture of 
three non-human protein standards [32] using a digest 
of Bovine Cytochrome C, Yeast alcohol dehydrogenase 
(ADH) and Rabbit  Glycogen Phosphorylase B to con-
firm the sensitivity and mass accuracy of the system prior 
to each patient sample set. The statistical validity of the 
LTQ XL (Thermo Electron Corporation, Waltham, MA, 
USA) linear quadrupole ion trap for LC–ESI–MS/MS 
of human plasma [21] was in agreement with the results 
from the 3D Paul ion trap [15, 32–34]. The stepwise 
extractions were collected and desalted over C18 prepar-
ative micro columns, eluted in 2 µl of 65% ACN and 5% 
formic acid, diluted tenfold with 5% formic acid in water 
and immediately loaded manually into a 20 μl metal sam-
ple loop before injecting onto the analytical column via 

a Rhodynne injector. Endogenous peptide samples were 
analyzed over a discontinuous gradient generated at a 
flow rate of ~ 10 μl per minute with an Agilent 1100 series 
capillary pump and split upstream of the injector during 
recording to about ~ 200  nl per minute. The separation 
was performed with a C18 (150  mm × 0.15  mm) fritted 
capillary column. The acetonitrile profile was started at 
5%, ramped to 12% after 5 min and then increased to 65% 
over ~ 90  min, remained at 65% for 5  min, decreased to 
50% for 15  min and then declined to a final proportion 
of 5% prior to injection of the next step fraction from the 
same patient. The nano HPLC effluent was analyzed by 
ESI ionization with detection by MS and fragmentation 
by MS/MS with a linear quadrupole ion trap [56]. The 
device was set to collect the precursors for up to 200 ms 
prior to MS/MS fragmentation with up to four fragmen-
tations per precursor ion that were averaged. Individual, 
independent samples from disease, normal and ice cold 
control were precipitated, fractionated over a step gradi-
ent and collected over C18 for manual injection.

Correlation analysis
Correlation analysis of ion trap data was performed using 
a goodness of fit test by X!TANDEM [35] and by cross-
correlation using SEQUEST [57] on separate servers to 
match tandem mass spectra to peptide sequences from 
the Homo sapiens RefSeq, Ensembl, SwissProt, includ-
ing hypothetical proteins XP or Genomic loci [13, 14, 
58]. Endogenous peptides with precursors greater than 
10,000 (E4) arbitrary counts were searched only as fully 
tryptic peptides (TRYP) and/or phosphopeptides (TYRP 
STYP) and compared in SQL Server/R. The X!TANDEM 
default ion trap data settings of ± 3 m/z from precursors 
peptides considered from 300 to 2000 m/z with a toler-
ance of 0.5 Da error in the fragments were used [15, 22, 
33–35, 59]. The best fit peptide of the MS/MS spectra to 
fully tryptic and/or phospho-tryptic peptides at charge 
states of + 2 versus + 3 were accepted with additional 
acetylation, or oxidation of methionine and with possible 
loss of water or ammonia. The resulting accession num-
bers, actual and estimated masses, correlated peptide 
sequences, peptide and protein scores, resulting protein 
sequences and other associated data were captured and 
assembled together in an SQL Server relational database 
[14].

Data sampling, sorting, transformation and visualization
Each disease and normal treatment was represented by 
9 to 26 independent patient samples that were resolved 
into 10 organic/water sub-fractions resulting in 90 to 
260 sub-samples per treatment for a total of 1508 LC–
ESI–MS/MS experiments that were archived together 
in SQL Server for statistical analysis [37, 39]. The linear 
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quadrupole ion trap provided the precursor ion inten-
sity values and the peptide fragment MS/MS spectra. 
The peptides and proteins were identified from MS/MS 
spectra by X!TANDEM and the observation frequency 
was counted by the SEQUEST algorithm. The large num-
ber of redundant correlations to each MS/MS at different 
charge states or to different peptides sequences may be a 
source of type I error that can be filtered out by a complex 
key or hashtag in SQL Server to ensure that each MS/MS 
spectra is only fit to one peptide and charge state. The 
MS and MS/MS spectra together with the results of the 
X!TANDEM and SEQUEST algorithms were parsed into 
an SQL Server database and filtered [14] before statisti-
cal and graphical analysis with the generic R data system 
[14–16, 32, 58]. The sum of the MS/MS spectra collected 
in breast versus ovarian cancer were summed to correct 
the observation frequency using Eq. 1 and the χ2 p-values 
converted to FDR q-values by the method of Benjamini 
and Hochberg [36]:

 Correction by sum correlations yielded similar results 
(not shown). The precursor intensity data for MS/MS 
spectra were log10 transformed, tested for normality and 
analyzed across institution/study and diseases verses 
controls by means, standard errors and ANOVA [15, 16, 
32]. The entirely independent analysis of the precursor 
intensity using the rigorous ANOVA with Tukey–Kramer 
HSD test versus multiple controls was achieved using a 
64 bit R server.

Results
Partition of plasma samples using differential solubility in 
organic/water mixtures combined with random and inde-
pendent sampling by LC–ESI–MS/MS detected peptides 
from proteins that were more frequently observed and/
or showed greater intensity in breast versus ovarian can-
cer. Here four independent lines of evidence, Chi Square 
analysis of observation frequency, previously estab-
lished structural/functional relationships from STRING, 
ANOVA analysis of peptide intensity, and agreement 
with the previous genetic or biochemical experiments, all 
indicated that there was significant variation in the pep-
tides of breast cancer patients compared to ovarian can-
cer and other diseases or normal plasma samples.

LC–ESI–MS/MS
The pool of endogenous tryptic (TRYP) and/or tryp-
tic phosphopeptides (TRYP STYP) were randomly and 
independently sampled without replacement by liquid 
chromatography, nano electrospray ionization and tan-
dem mass spectrometry (LC–ESI–MS/MS) [17] from 
breast vs ovarian cancer, or female normal, other disease 

(1)(Breast−Ovarian)2/(Ovarian+ 1)

and normal plasma, and ice cold controls to serve as a 
baseline [18, 19]. Some 15,968,550 MS/MS spectra ≥ E4 
intensity counts were correlated by the SEQUEST 
and X!TANDEM algorithms that resulted in a total of 
19,197,152 redundant MS/MS spectra to peptide in pro-
tein matches. The redundant correlations from SEQUEST 
were filtered to retain only the best fit by charge state and 
peptide sequence in SQL Server to entirely avoid re-use 
of the same MS/MS spectra [17, 31, 37, 39]. The filtered 
results were then analyzed by the generic R statistical sys-
tem in a matrix of disease and controls that reveals the 
set of blood peptides and proteins specific to each disease 
state. The statistical validity of the extraction and sam-
pling system were previously established by computation 
of protein (gene symbol) p-values and FDR corrected 
q-values by the method of Benjamini and Hochberg [36] 
and frequency comparison to false positive noise or ran-
dom spectra [17, 21].

Frequency correction
A total of 455,426 MS/MS ≥ E4 counts were collected 
from breast cancer samples and 498,616 MS/MS ≥ E4 
counts were collected from ovarian cancer plasma and 
these sums were used to correct observation frequency. A 
small subset of proteins show large increases or decreases 
in observation frequency between breast versus ovarian 
cancer resulting in large Chi Square values (Fig. 1). Simi-
lar results were obtained from comparison to female nor-
mal (not shown).

Comparison of breast cancer to ovarian cancer by Chi 
square analysis
A set of ~ 500 gene symbols showed Chi Square (χ2) val-
ues ≥ 15 between breast cancer versus ovarian cancer. 
Specific peptides and/or phosphopeptides from cellu-
lar proteins, membrane proteins, nucleic acid binding 
proteins, signaling factors, metabolic enzymes and oth-
ers, including uncharacterized proteins, showed signifi-
cantly greater observation frequency in breast cancer. 
In agreement with the literature, peptides from many 
established plasma proteins including acute phase or 
common distress proteins such as APOE, C4A, C4B, 
C4B2, C3, CFI, APOA1, APOC2, APOC4-APOC2, 
IGHE, ITIH3, and ITIH4 [60, 61] were observed to vary 
between cancer and control samples. The Chi Square 
analysis showed some proteins with χ2 values that were 
apparently too large (χ2 ≥ 60, p < 0.0001, d.f. 1) to all 
have resulted from random sampling error. Many cel-
lular proteins also showed large changes in frequency 
by Chi Square (χ2 > 100, p < 0.0001) in the breast can-
cer samples such as CPEB1, LTBP4, HIF-1A, IGHE, 
RAB44, NEFM, C19orf82, SLC35B1, 1D12A, C8orf34, 
HIF1A, OCLN, EYA1, HLA-DRB1, LARS, PTPDC1, 
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WWC1, ZNF562, PTMA, MGAT1, NDUFA1, NOGOC, 
OR1E1, OR1E2, CFI, HSA12, GCSH, ELTD1, TBX15, 
NR2C2, FLJ00045, PDLIM1 GALNT9, ASH2L, PPFIBP1, 
LRRC4B, SLCO3A1, BHMT2, CS, FAM188B2, LGALS7, 
SAT2, SFRS8, SLC22A12, WNT9B, SLC2A4, ZNF101, 
WT1, CCDC47, ERLIN1, SPFH1, EID2, THOC1, 
DDX47, MREG, PTPRE, EMILIN1, DKFZp779G1236 
and MAP3K8 among others (Table 1). The full list of Chi 
Square results are found in the Additional file 1: Table S1.

Pathway and gene ontology analysis using the STRING 
algorithm
The protein gene symbols with large Chi Square val-
ues were significantly enriched in proteins that showed 
a complex set of previously established functional and 
structural relationships by STRING analysis. In a compu-
tationally independent method to ensure the variation in 
proteins associated with breast cancer were not just the 
result of some random process, we analyzed the distribu-
tion of the known protein–protein interactions and the 
distribution of the cellular location, molecular function 
and biological processes of the proteins identified from 
endogenous peptides with respect to a random sampling 

Fig. 1  Quantile plots of the corrected difference and Chi Square values of the Breast Cancer versus Ovarian Cancer results after frequency 
correction. The difference of breast cancer (n ≥ 9) versus ovarian cancer (n ≥ 9) using the quantile plot that tended to zero (see quantile line).  
Similar results were obtained by comparison to breast cancer or other controls (not shown). Plots:  a quantile plot of the observation frequency 
of tryptic peptides from breast cancer–ovarian cancer;  b χ2 plot of the observation frequency of tryptic peptides from breast cancer–ovarian 
cancer tryptic peptides; c quantile plot of the observation frequency of tryptic STYP peptides from breast cancer–ovarian cancer; d χ2 plot of the 
observation frequency of tryptic STYP peptides from breast cancer–ovarian cancer tryptic peptides
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of the human genome. There were many protein inter-
actions apparent between the proteins computed to be 
specific to breast cancer from fully tryptic (Fig. 2) and/or 
phospho tryptic peptides (Fig. 3). The breast cancer sam-
ples showed statistically significant enrichment of protein 
interactions and Gene Ontology terms that were consist-
ent with structural and functional relationships between 
the proteins identified in breast cancer compared to a 
random sampling of the human genome (Tables  2, 3, 
4): STRING analysis of the breast cancer specific pro-
teins detected by fully tryptic peptides and/or fully 

tryptic phosphopeptides with a Chi Square (χ2) value 
of ≥ 9 showed a significant protein interaction [Network 
Stats: number of nodes, 1580; number of edges, 9987; 
average node degree, 12.6; avg. local clustering coeffi-
cient, 0.272; expected number of edges, 8736; PPI enrich-
ment p-value < 1.0e−16].    

ANOVA analysis across disease, normal and control plasma 
treatments
Many proteins that showed greater observation fre-
quency in breast cancer also showed significant variation 
in precursor intensity compared to ovarian cancer, the 
female normal controls and male or female EDTA plasma 
from other disease and normal plasma by ANOVA com-
parison. The mean precursor intensity values from gene 
symbols that varied by Chi Square (χ2 > 15) were sub-
sequently analyzed by univariate ANOVA in R to look 
for proteins that showed differences in ion precursor 
intensity values across treatments [12, 16] (Figs.  4, 5, 
6). Common plasma proteins including APOE, ITIH4 
and C3 showed significantly different intensity between 
breast cancer versus ovarian cancer and normal plasma 
(Fig.  4). Analysis of the frequently observed proteins by 
quantile box plots and ANOVA confirmed increases in 
mean precursor intensity in cancer associated proteins 
as SLC35B1, IQCJ-SCHIP1, MREG, BHMT2, LGALS7, 
THOC1, ANXA4, DHDDS, SAT2, PTMA, FYCO1 and 
ZNF562 among others between breast cancer versus 
ovarian cancer and/or other disease or normal plasma 
(Fig.  5). HSA12 represents many proteins that were 
observed only in breast cancer but were apparently only 
sporadically detected and require further consideration. 
Glutamine Serine Rich Protein 1 (QSER1) was observed 
most frequently in ovarian cancer (Table 5). In contrast, 
QSER1 showed higher average intensity in breast can-
cer than ovarian cancer or any other disease and normal 
by ANOVA followed by the Tukey–Kramer HSD test 
(Fig. 6) when all peptides were considered. However, the 
peptide QPKVKAEPPPK, that was specific to QSER1 by 
BLAST [62], was observed in ovarian cancer but was not 
observed in other samples (Fig. 6d).   

Discussion
A simple and direct strategy to discover breast cancer-
specific variation may be to compare plasma peptides 
and proteins to ovarian cancer and other disease and 
control sample sets under identical conditions. The aim 
and objective of this study was proof of concept towards 
a method to compare the endogenous trytic peptides of 
breast cancer plasma to those from multiple clinical treat-
ments and locations that utilized random and independ-
ent sampling by a battery of robust and sensitive linear 

Table 1  Breast cancer specific proteins detected by  fully 
tryptic peptides and/or  fully tryptic phosphopeptides 
(STYP) that  show a  Chi Square (χ2) value of ≥ 200.  N 
is the number of protein accessions per Gene Symbol

Tryptic Gene_Symbol Tryptic STYP

Gene Symbol Mean X2 n Gene Symbol Mean X2 n

CPEB1 3632.919337 8 LTBP4 4340.217566 1

LTBP4 2560.471517 1 C19orf82 3256.703566 1

HIF-1A 1640.975019 1 PMEPA1 1849.257201 1

C4A 1626.866928 2 C4A 1703.128264 2

C4B 1626.866928 2 HIF-1A 1668.954624 1

C4B_2 1612.006355 1 C4B_2 1648.102936 1

C3 757.057969 2 C4B 1637.227896 2

IGHE 656.105042 1 CA7 1582.270693 1

RAB44 656.105042 1 PCDHGA5 1462.852842 2

NEFM 652.140957 5 C8orf34 1189.441768 5

C19orf82 613.883173 1 C3 835.343196 2

SLC35B1 479.46677 1 KNOP1 822.636731 3

C8orf34 460.113072 5 AMMECR1L 794.024811 5

1D12A 432.71876 1 HMMR 699.705336 1

HIF1A 352.516679 3 HTR3B 670.791156 1

OCLN 341.835514 3 PCDHJ 611.647195 1

APOE 336.148697 3 ZFAND1 522.966422 2

PTPDC1 316.183187 2 PPID 522.527735 1

EYA1 306.858733 1 OXER1 509.701516 1

HLA-DRB1 306.858733 1 DCHS2 507.103436 1

WWC1 294.679057 9 RAB44 449.029189 1

ZNF562 273.551291 13 NUP50 431.635555 4

CFI 251.996191 7 HLA-DRB1 417.238656 1

MGAT1 241.814491 1 PCED1A 375.630369 4

NDUFA1 241.814491 1 HIF1A 304.82744 3

NOGOC 241.814491 1 CHMP5 297.080368 2

OR1E1 241.814491 1 HMP19 289.436434 5

OR1E2 241.814491 1 LOC102723665 286.501857 1

PTMA 234.938717 1 CYC1 260.817537 2

HSA12 218.336655 1 GCSH 260.051794 1

ELTD1 206.644334 1 CNBP 259.243457 7

GCSH 202.57471 1 SMIM12 256.548507 1
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quadrupole ion traps where the results were compiled 
using the standard SQL Server and R statistical systems. 
Random and independent sampling of peptides from 
step-wise fractionation followed by LC–ESI–MS/MS is a 
time and manual labor intensive approach that is sensi-
tive, direct, and rests on few assumptions [17, 38]. High 
signal to noise ratio of blood peptides is dependent on 
sample preparation to break the sample into many sub-
fractions to relieve competition and suppression of ioni-
zation and thus achieve sensitivity [13, 21, 22] but then 
requires large computing power to re-assemble the sub-
fractions, samples and treatments [14, 21, 38]. The careful 
study of pre-clinical variation over time, and under vari-
ous storage and preservation conditions, seems to rule 
out pre-clinical variation as the most important source 
of variation between breast cancer and other disease and 
control treatments [17–19]. Together the results amount 
to a successful proof of principal for the application of 

random and independent sampling of plasma from mul-
tiple clinical locations by LC–ESI–MS/MS to identify 
and quantify proteins and peptides that show variation 
between sample populations. The approach shows great 
sensitivity and flexibility but relies on the fit of MS/MS 
spectra to assign peptide identity and statistical analysis 
of precursor ion counts and intensity by Chi Square and 
ANOVA and so is computationally intensive.

Chi Square analysis of breast cancer versus ovarian cancer
The SQL Server and R statistical system permits the rapid 
statistical and graphical analysis of the data at the level of 
Gene symbols, proteins or peptides. The large differences 
in observation frequency between breast and ovarian 
cancer using Chi Square after correction by the number 
of mass spectra collected was a simple means to reveal 
proteins that may vary in expression between the related 
disease states. Examining the observation frequency 

Fig. 2  The breast cancer STRING network where Chi Square χ2 ≥ 15 from fully tryptic peptides. Breast cancer tryptic peptide frequency difference 
greater than 15 and χ2 value greater than 15 at degrees of freedom of 1 (p < 0.0001). Network Stats: number of nodes, 173; number of edges, 260; 
average node degree, 3.01; avg. local clustering coefficient, 0.378; expected number of edges, 206; PPI enrichment p-value, 0.000175
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across all twelve disease and control clinical sample 
sets was a direct means to look for Gene Symbols that 
showed greater frequency in one sample set such QSER1 
or to look for its peptide QPKVKAEPPPK that was highly 
specific to ovarian cancer [39].

Pathway and gene ontology analysis by the STRING 
algorithm
The set of breast cancer gene symbols that were signifi-
cant from Chi Square analysis of the peptide frequency 
counts were independently confirmed by STRING 

analysis. The network analysis by STRING indicated 
that the peptides and proteins detected were not merely 
a random selection of the proteins from the human 
genome but showed statistically significant protein–
protein interactions, and enrichment of specific cellular 
components, biological processes, and molecular func-
tions associated with the biology of cancer. The signifi-
cant results from STRING analysis indicated that the 
results could not have resulted from random sampling 
error between breast versus ovarian cancer. The previ-
ously established structural or functional relationships 

Fig. 3  The breast cancer STRING network where Chi Square χ2 ≥ 15 from fully tryptic phospho peptides. Breast cancer TRYP STYP, frequency 
difference greater than 15 and χ2 value greater than 15 at degrees of freedom of 1 (p < 0.0001). Network Information: number of nodes, 191; number 
of edges, 182; average node degree, 1.91; avg. local clustering coefficient, 0.335; expected number of edges, 152; PPI enrichment p-value, 0.00911



Page 10 of 23Dufresne et al. Clin Proteom           (2019) 16:43 

Table 2  STRING analysis of Biological Process of Gene Symbol distributions from the TRYP and TRYP STYP where delta 
and χ2 were both greater than 9 after correction

#Term ID Term description Observed 
gene count

Background 
gene count

False discovery rate

O:0016043 Cellular component organization 551 5163 4.00E−09

O:0071840 Cellular component organization or biogenesis 567 5342 4.00E−09

O:0007017 Microtubule-based process 106 605 1.17E−08

O:0051641 Cellular localization 267 2180 7.59E−08

O:0006996 Organelle organization 356 3131 8.96E−08

O:0007010 Cytoskeleton organization 139 953 3.36E−07

O:0007018 Microtubule-based movement 57 276 3.34E−06

O:0007399 Nervous system development 257 2206 7.50E−06

O:0008104 Protein localization 230 1966 3.52E−05

O:0120036 Plasma membrane bounded cell projection organization 138 1034 3.52E−05

O:0048731 System development 427 4144 4.68E−05

O:0033036 Macromolecule localization 257 2268 4.69E−05

O:0070727 Cellular macromolecule localization 171 1374 4.83E−05

O:0030030 Cell projection organization 140 1067 4.96E−05

O:0034613 Cellular protein localization 169 1367 7.45E−05

O:0009987 Cellular process 1271 14652 0.00013

O:0051179 Localization 516 5233 0.00015

O:0043170 Macromolecule metabolic process 702 7453 0.00018

O:0007275 Multicellular organism development 470 4726 0.00025

O:0032502 Developmental process 528 5401 0.00025

O:0051649 Establishment of localization in cell 189 1616 0.0003

O:0046907 Intracellular transport 167 1390 0.00031

O:0090304 Nucleic acid metabolic process 399 3941 0.00043

O:0051128 Regulation of cellular component organization 252 2306 0.00047

O:0007156 Homophilic cell adhesion via plasma membrane adhesion molecules 34 158 0.00063

O:0048856 Anatomical structure development 496 5085 0.00066

O:0006139 Nucleobase-containing compound metabolic process 449 4551 0.00082

O:0007155 Cell adhesion 110 843 0.00082

O:0006928 Movement of cell or subcellular component 160 1355 0.001

O:0051276 Chromosome organization 125 999 0.001

O:0097435 Supramolecular fiber organization 60 383 0.0012

O:0046483 Heterocycle metabolic process 459 4716 0.002

O:0048666 Neuron development 99 758 0.002

O:0000226 Microtubule cytoskeleton organization 60 393 0.0022

O:0019219 Regulation of nucleobase-containing compound metabolic process 408 4133 0.0022

O:0044260 Cellular macromolecule metabolic process 602 6413 0.0022

O:0051130 Positive regulation of cellular component organization 135 1128 0.0025

O:0006725 Cellular aromatic compound metabolic process 460 4754 0.0028

O:0060255 Regulation of macromolecule metabolic process 572 6072 0.0028

O:0098609 Cell–cell adhesion 62 416 0.0028

O:0044085 Cellular component biogenesis 267 2556 0.0029

O:0051252 Regulation of RNA metabolic process 385 3890 0.0029

O:0010468 Regulation of gene expression 440 4533 0.0033

O:0022607 Cellular component assembly 247 2343 0.0034

O:0048699 Generation of neurons 162 1422 0.0034

O:0071166 Ribonucleoprotein complex localization 27 125 0.0034

O:0030182 Neuron differentiation 115 940 0.0038

O:0032989 Cellular component morphogenesis 93 720 0.0038
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observed among the breast cancer specific gene sym-
bols filtered by χ2 were consistent with the detection 
of bone fide variation between breast versus ovarian 
cancer. The STRING results apparently indicated that 
specific cellular protein complexes are released into the 
circulation of breast cancer patients [50]. The enrich-
ment of proteins associated with cell polarity, cytoskel-
eton, plasma membrane bounded cell projection, 
microtubule cytoskeleton, supramolecular fiber and 
membrane-bounded organelle were all consistent with 

the activation of phagocytic functions in motile cancer 
cells.

Breast versus ovarian cancer specific variation by ANOVA
ANOVA may be an independent means to confirm the 
results of frequency analysis. However, the interpreta-
tion of mean precursor intensity data by ANOVA [12] 
and the use of the Tukey–Kramer multiple compari-
son [15, 16] may be confounded by the different peptide 
sequences within each protein [32]. Specific endogenous 

Table 2  (continued)

#Term ID Term description Observed 
gene count

Background 
gene count

False discovery rate

O:0098742 Cell–cell adhesion via plasma-membrane adhesion molecules 40 230 0.0038

O:0031175 Neuron projection development 82 616 0.0043

O:0006611 Protein export from nucleus 29 144 0.0048

O:0016070 RNA metabolic process 342 3430 0.0048

O:0031323 Regulation of cellular metabolic process 569 6082 0.0048

O:0050794 Regulation of cellular process 929 10484 0.0048

O:1901360 Organic cyclic compound metabolic process 474 4963 0.0049

O:0051168 Nuclear export 31 161 0.005

O:0080090 Regulation of primary metabolic process 560 5982 0.005

O:0051640 Organelle localization 77 574 0.0051

O:0006403 RNA localization 37 211 0.0053

O:0019222 Regulation of metabolic process 604 6516 0.0053

O:0035023 Regulation of Rho protein signal transduction 27 131 0.0053

O:2000112 Regulation of cellular macromolecule biosynthetic process 395 4050 0.0053

O:0000902 Cell morphogenesis 82 626 0.0054

O:0051171 Regulation of nitrogen compound metabolic process 546 5827 0.0054

O:0071426 Ribonucleoprotein complex export from nucleus 26 124 0.0054

O:0033043 Regulation of organelle organization 134 1155 0.0058

O:0048468 Cell development 166 1493 0.0058

O:0050658 RNA transport 34 189 0.006

O:0006355 Regulation of transcription, DNA-templated 360 3661 0.0061

O:0006405 RNA export from nucleus 27 134 0.0061

O:0010467 Gene expression 366 3733 0.0061

O:0022008 Neurogenesis 168 1519 0.0061

O:0051056 Regulation of small TPase mediated signal transduction 48 310 0.0061

O:0065007 Biological regulation 1026 11740 0.0061

O:0003205 Cardiac chamber development 31 166 0.0062

O:1903506 Regulation of nucleic acid-templated transcription 361 3683 0.0068

O:0010556 Regulation of macromolecule biosynthetic process 400 4143 0.0079

O:0006406 mRNA export from nucleus 23 107 0.0083

O:0015833 Peptide transport 157 1416 0.0084

O:0032501 Multicellular organismal process 599 6507 0.0092

O:0051493 Regulation of cytoskeleton organization 65 477 0.0092

The protein–protein interaction statistics were: 485 nodes; 1148 edges; average node degree, 4.73; avg. local clustering coefficient, 0.325; expected number of edges: 
851; PPI enrichment p-value: < 1.0e−16
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Table 3  STRING analysis of Molecular Function of Gene Symbol distributions from the TRYP and TRYP STYP where delta 
and χ2 were both greater than 9 after correction

#Term ID Term description Observed gene 
count

Background 
gene count

False discovery rate

GO:0005488 Binding 1152 11878 9.77E−20

GO:0005515 Protein binding 694 6605 3.83E−13

GO:0005524 ATP binding 209 1462 1.30E−11

GO:0043167 Ion binding 637 6066 1.30E−11

GO:0032559 Adenyl ribonucleotide binding 213 1514 1.80E−11

GO:0008144 Drug binding 227 1710 3.62E−10

GO:0035639 Purine ribonucleoside triphosphate binding 232 1794 1.81E−09

GO:0032553 Ribonucleotide binding 238 1868 3.13E−09

GO:0032555 Purine ribonucleotide binding 236 1853 3.33E−09

GO:0097159 Organic cyclic compound binding 560 5382 3.33E−09

GO:1901363 Heterocyclic compound binding 552 5305 4.36E−09

GO:0097367 Carbohydrate derivative binding 265 2163 4.89E−09

GO:0000166 Nucleotide binding 258 2097 5.95E−09

GO:0008092 Cytoskeletal protein binding 130 882 5.00E−08

GO:0003779 Actin binding 76 413 6.27E−08

GO:0043168 Anion binding 309 2696 6.27E−08

GO:0016887 ATPase activity 73 392 7.90E−08

GO:0036094 Small molecule binding 282 2460 3.63E−07

GO:0042623 ATPase activity, coupled 60 320 1.76E−06

GO:0017111 Nucleoside-triphosphatase activity 111 778 3.30E−06

GO:0004386 Helicase activity 36 147 4.31E−06

GO:0016462 Pyrophosphatase activity 114 819 6.34E−06

GO:0046872 Metal ion binding 420 4087 6.91E−06

GO:0043169 Cation binding 425 4170 1.22E−05

GO:0003777 Microtubule motor activity 29 110 1.74E−05

GO:0008017 Microtubule binding 48 253 2.25E−05

GO:0051015 Actin filament binding 35 158 3.76E−05

GO:0019899 Enzyme binding 241 2197 9.02E−05

GO:0003774 Motor activity 30 131 0.00012

GO:0015631 Tubulin binding 55 344 0.00032

GO:0051020 GTPase binding 83 614 0.00064

GO:0017048 Rho GTPase binding 32 162 0.00073

GO:0003682 Chromatin binding 69 501 0.0018

GO:0005089 Rho guanyl-nucleotide exchange factor activity 19 76 0.0025

GO:0003676 Nucleic acid binding 330 3332 0.0028

GO:0005198 Structural molecule activity 86 679 0.0032

GO:0031267 Small GTPase binding 70 525 0.0036

GO:0004672 Protein kinase activity 81 635 0.0039

GO:0140096 Catalytic activity, acting on a protein 225 2176 0.005

GO:0019904 Protein domain specific binding 87 706 0.0061

GO:0005085 Guanyl-nucleotide exchange factor activity 46 311 0.0066

GO:0005509 Calcium ion binding 86 700 0.007

GO:0017016 Ras GTPase binding 66 510 0.0103

GO:0005516 Calmodulin binding 32 194 0.0106

GO:0004674 Protein serine/threonine kinase activity 59 444 0.011

GO:0051010 Microtubule plus-end binding 7 13 0.0119

GO:0005088 Ras guanyl-nucleotide exchange factor activity 37 243 0.0143

GO:0005096 GTPase activator activity 40 278 0.023
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tryptic peptides, were detected from breast cancer ver-
sus the corresponding ovarian cancer or the other dis-
ease and normal plasma after filtering proteins by Chi 
Square and ANOVA. When all peptides were considered, 
QSER1 showed significantly higher mean intensity in 
breast cancer but the QSER1 peptide QPKVKAEPPPK 
was observed more frequently in ovarian cancer. The 
exclusive observation of the peptide QPKVKAEPPPK in 
ovarian cancer samples seemed to indicate the presence 
or activation of a tryptic protease with a different selec-
tivity for QSER1. An automated examination at the level 
of peptides and proteins may be required that is an even 
larger computational challenge. It should be possible to 
specifically compare and confirm the disease specific 
expression peptides and parent proteins by automatic 
targeted proteomics [18] after extraction of peptides [25] 
or after collection of the parent protein over the best 
partition chromatography resin [22] followed by tryp-
tic digestion and analysis to test the discovery from this 
small experiment on a larger set of samples. For example, 
C4B peptides discovered by random and independent 
sampling were shown to be a marker of sample degra-
dation by automatic targeted assays [17–19]. Automatic 
targeted analysis of peptides from independent analy-
sis provided relative quantification to rapidly confirm 
the potential utility of C4B peptide as a marker of sam-
ple degradation [18]. Subsequently, the best performing 
peptides and proteins may be absolutely quantified by 

external or internal-isotopic standards to provide abso-
lute quantification.

Agreement with previous genetic and biochemical 
experiments
The striking agreement between the peptides and pro-
teins observed in the plasma of breast cancer patients 
and the previous literature on breast cancer tumors, 
adjacent fluids, cell lines or blood fluids indicates that 
LC–ESI–MS/MS of blood peptides will be a powerful 
tool for selecting plasma proteins and peptides for fur-
ther research and confirmation. The results of mass spec-
trometry show striking agreement with previous genetic 
or biochemical experiments on cancer tissues, tumors, 
biopsies or cell lines: CPEB1 [63], LTBP4 [64], HIF1A 
[65, 66], IGHE [67], RAB44 [68], NEFM [39], C19orf82, 
SLC35B1 [69], 1D12A that shows a cyptic alignment with 
cyclin-dependent kinase-like isoform 1 [70], C8orf34 
[71], OCLN [72], EYA1 [73], HLA-DRB1 [74], LAR [75] 
and LRRC4B that interacts with the LARS receptor 
phosphatases [76], PTPDC1 [77], WWC1 [78], ZNF562, 
PTMA [79], MGAT1 [80], NDUFA1 [81], NOGOC [82], 
olfactory receptors OR1E or the HSA12 protein [83], 
GCSH [84], ELTD1 [85], TBX15 [86], orphan nuclear 
receptors such as NR2C2 [87], autophagy related pro-
teins such as ATG16L1 (FLJ00045) that regulate the pro-
duction of extracellular vesicles called exosomes [88], 
PDLIM1 [89, 90], GALNT9 [91], ASH2L [92], PPFIBP1 

Table 3  (continued)

#Term ID Term description Observed gene 
count

Background 
gene count

False discovery rate

GO:0004004 ATP-dependent RNA helicase activity 15 66 0.0237

GO:0016773 Phosphotransferase activity, alcohol group as acceptor 89 767 0.0237

GO:0030695 GTPase regulator activity 43 307 0.0237

GO:0060589 Nucleoside-triphosphatase regulator activity 47 345 0.0237

GO:0044877 Protein-containing complex binding 108 968 0.0241

GO:0016772 Transferase activity, transferring phosphorus-containing groups 109 982 0.0255

GO:0032947 Protein-containing complex scaffold activity 15 68 0.0267

GO:0008047 Enzyme activator activity 63 510 0.0303

GO:0097493 Structural molecule activity conferring elasticity 7 17 0.0325

GO:0016301 Kinase activity 94 835 0.0352

GO:0051959 Dynein light intermediate chain binding 9 29 0.0352

GO:0042800 Histone methyltransferase activity (H3-K4 specific) 5 8 0.0388

GO:0008094 DNA-dependent ATPase activity 14 66 0.0482

GO:0140030 Modification-dependent protein binding 22 131 0.0482

GO:0008026 ATP-dependent helicase activity 17 90 0.0499

Additional details see Table 2
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Table 4  STRING analysis of cellular component of Gene Symbol distribution from the TRYP and TRYP STYP where delta 
and χ2 were both greater than 9 after correction

#Term ID Term description Observed gene 
count

Background gene 
count

False discovery rate

GO:0005622 Intracellular 1302 14286 1.22E−14

GO:0044424 Intracellular part 1282 13,996 1.22E−14

GO:0005856 Cytoskeleton 281 2068 4.49E−14

GO:0043232 Intracellular non-membrane-bounded organelle 467 4005 4.49E−14

GO:0044464 Cell part 1417 16,244 4.88E−11

GO:0043226 Organelle 1143 12,432 7.73E−11

GO:0043229 Intracellular organelle 1124 12,193 9.50E−11

GO:0044430 Cytoskeletal part 207 1547 1.04E−09

GO:0032991 Protein-containing complex 501 4792 2.68E−08

GO:0042995 Cell projection 242 1969 2.68E−08

GO:0044422 Organelle part 862 9111 4.13E−08

GO:0120025 Plasma membrane bounded cell projection 234 1900 4.13E−08

GO:0005737 Cytoplasm 1030 11,238 5.39E−08

GO:0005634 Nucleus 676 6892 9.10E−08

GO:0044428 Nuclear part 455 4359 2.36E−07

GO:0031981 Nuclear lumen 425 4030 2.95E−07

GO:0015630 Microtubule cytoskeleton 150 1118 4.50E−07

GO:0044446 Intracellular organelle part 834 8882 4.50E−07

GO:0044451 Nucleoplasm part 145 1073 4.89E−07

GO:0043005 Neuron projection 149 1142 2.14E−06

GO:0099081 Supramolecular polymer 122 880 2.14E−06

GO:0070013 Intracellular organelle lumen 516 5162 2.48E−06

GO:0120038 Plasma membrane bounded cell projection part 165 1316 3.34E−06

GO:0099568 Cytoplasmic region 68 402 3.64E−06

GO:0099512 Supramolecular fiber 118 873 8.36E−06

GO:0030054 Cell junction 131 1006 1.11E−05

GO:0043227 Membrane-bounded organelle 1007 11,244 1.79E−05

GO:0005930 Axoneme 28 107 1.90E−05

GO:0005654 Nucleoplasm 357 3446 2.24E−05

GO:0043231 Intracellular membrane-bounded organelle 936 10,365 2.24E−05

GO:0044420 Extracellular matrix component 20 59 2.55E−05

GO:0097458 Neuron part 171 1449 4.59E−05

GO:0005829 Cytosol 485 4958 5.91E−05

GO:0032838 Plasma membrane bounded cell projection cytoplasm 36 179 9.90E−05

GO:0098644 Complex of collagen trimmers 11 19 0.00014

GO:0015629 Actin cytoskeleton 65 432 0.00016

GO:0030424 Axon 75 530 0.00023

GO:0030016 Myofibril 39 216 0.00034

GO:0005911 Cell–cell junction 60 402 0.00042

GO:0043292 Contractile fiber 40 228 0.00045

GO:0062023 Collagen-containing extracellular matrix 29 144 0.00069

GO:0016604 Nuclear body 94 742 0.00088

GO:0044449 Contractile fiber part 37 212 0.00093

GO:0031012 Extracellular matrix 45 283 0.0011

GO:0016459 Myosin complex 18 69 0.0012

GO:0031965 Nuclear membrane 46 300 0.0019

GO:0005874 Microtubule 55 385 0.0022

GO:0005581 Collagen trimer 20 88 0.0024
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Table 4  (continued)

#Term ID Term description Observed gene 
count

Background gene 
count

False discovery rate

GO:0098862 Cluster of actin-based cell projections 27 143 0.0028

GO:0005815 Microtubule organizing center 85 683 0.0029

GO:0044444 Cytoplasmic part 832 9377 0.0029

GO:0044441 Ciliary part 58 421 0.0032

GO:0005583 Fibrillar collagen trimer 7 11 0.0033

GO:0016460 Myosin II complex 11 32 0.0039

GO:0033267 Axon part 49 341 0.0039

GO:0014704 Intercalated disc 14 51 0.0041

GO:0005859 Muscle myosin complex 10 27 0.0044

GO:0008023 Transcription elongation factor complex 14 52 0.0047

GO:0032982 Myosin filament 9 22 0.0047

GO:0034399 Nuclear periphery 25 134 0.0047

GO:0044291 Cell–cell contact zone 16 67 0.0055

GO:0005915 Zonula adherens 6 9 0.0069

GO:0005694 Chromosome 108 950 0.0076

GO:0005929 Cilium 71 570 0.0076

GO:0030496 Midbody 28 165 0.0076

GO:0043034 Costamere 8 19 0.008

GO:0044447 Axoneme part 10 31 0.0093

GO:0005913 Cell–cell adherens junction 16 72 0.0098

GO:0032420 Stereocilium 12 44 0.0098

GO:0005875 Microtubule associated complex 25 144 0.01

GO:0016607 Nuclear speck 51 381 0.01

GO:0031252 Cell leading edge 50 371 0.01

GO:0032421 Stereocilium bundle 13 51 0.01

GO:0033268 Node of Ranvier 7 15 0.01

GO:0097060 Synaptic membrane 43 308 0.0114

GO:0034708 Methyltransferase complex 18 90 0.0124

GO:0042383 Sarcolemma 22 122 0.0124

GO:0030056 Hemidesmosome 5 7 0.0137

GO:0098590 Plasma membrane region 116 1061 0.0141

GO:0044450 Microtubule organizing center part 27 167 0.0147

GO:0090543 Flemming body 9 28 0.0147

GO:0005814 Centriole 22 125 0.0152

GO:0030017 Sarcomere 30 195 0.0159

GO:0042405 Nuclear inclusion body 6 12 0.016

GO:0070161 Anchoring junction 38 270 0.0172

GO:0005635 Nuclear envelope 56 446 0.0183

GO:0036396 RNA N6-methyladenosine methyltransferase complex 5 8 0.019

GO:0005813 Centrosome 58 468 0.0194

GO:0005730 Nucleolus 102 926 0.0196

GO:0030427 Site of polarized growth 26 164 0.0203

GO:0045211 Postsynaptic membrane 34 237 0.0207

GO:0030018 Z disc 21 122 0.0217

GO:0098858 Actin-based cell projection 29 192 0.0217

GO:0016363 Nuclear matrix 19 106 0.0228

GO:0005938 Cell cortex 33 230 0.0229

GO:0030027 Lamellipodium 28 185 0.024

GO:0044304 Main axon 14 67 0.0242
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[93], SLCO3A1 [94], BHMT2 [95], CS citrate synthase 
[96] FAM188B2 inactive ubiquitin carboxyl-terminal 
hydrolase MINDY4B that is expressed in breast cancer 
tissue, LGALS7 [97] SAT2 [98], SFRS8, SLC22A12 [99], 
WNT9B [100], SLC2A4 [101], ZNF101, WT1 (Wilms 
Tumor Protein) [102], CCDC47 [103], ERLIN1 (SPFH1) 
and MREG [104], EID2 [105], THOC1 [106, 107], DDX47 
[108], PTPRE [109], EMILIN1 [110], DKFZp779G1236 
(piccolo, or piBRCA2) [111], MAP3K8 [112] regulated 
by Serine/Arginine-Rich Splicing Factor Kinase [113], 
QSER1 [39], IQCJ-SCHIP1 [114, 115], ANXA4 [116] and 
DHDDS [117] among others. The disease-specific pro-
teins and peptides may result from the introduction of 
new proteins into circulation, or the release/activation of 
proteases in circulation, as a result of disease. The strik-
ing agreement of the plasma proteins observed here with 
the previous genomic, RNA expression and proteomic 
experiments on cancer tumors, fluids and cells indicates 
that comparing many and disease and control plasma 

samples by random and independent sampling with LC–
ESI–MS/MS may be a direct and practical means to look 
for selective diagnostic and prognostic markers.

Conclusion
The results of the step-wise organic extraction of pep-
tides [21] provided for the enrichment of endogenous 
tryptic peptides with high signal to noise for random 
sampling [18] across disease and normal treatments. 
A large amount of proteomic data from multiple dis-
eases, controls and institutions may be collected by 
random and independent sampling with a battery of 
robust and sensitive linear quadrupole ion traps and 
the results stored, related and statistically analyzed in 
64 bit SQL Server/R. The LC–ESI–MS/MS of plasma 
endogenous tryptic peptides identified many blood 
proteins elevated in breast cancer that were previously 
associated with the biology of cancer or that have been 
shown to be biomarkers of solid tumors by genetic 

Table 4  (continued)

#Term ID Term description Observed gene 
count

Background gene 
count

False discovery rate

GO:0070449 Elongin complex 5 9 0.0246

GO:0005604 Basement membrane 17 91 0.0248

GO:0043194 Axon initial segment 6 14 0.0248

GO:0005912 Adherens junction 35 252 0.0263

GO:0099513 Polymeric cytoskeletal fiber 73 645 0.0402

GO:0005587 Collagen type IV trimer 4 6 0.0406

GO:1990752 Microtubule end 7 22 0.0413

GO:0030426 Growth cone 24 159 0.0442

GO:0044427 Chromosomal part 89 819 0.0442

GO:0005858 Axonemal dynein complex 6 17 0.0499

GO:0035371 Microtubule plus-end 6 17 0.0499

Additional details see Table 2

(See figure on next page.)
Fig. 4  The distributions of log10 precursor intensity by quantile and quantile box plots of APOE, ITIH4, and C3 across the disease and control 
treatments. a APOE log10 peptide intensity quantile plot; b APOE log10 peptide intensity quantile box plot; c ITIH4 log10 peptide intensity quantile 
plot; d ITIH4 log10 peptide intensity quantile box plot; e C3 log10 peptide intensity quantile plot; f C3 log10 peptide intensity quantile box plot; 
Treatment ID numbers: 1, Alzheimer normal; 2, Alzheimer’s normal control STYP; 3, Alzheimer’s dementia; 4, Alzheimer’s dementia STYP; 5, Cancer 
breast; 6, Cancer breast STYP; 7, Cancer control; 8, Cancer control STYP; 9, Cancer ovarian; 10, Cancer ovarian STYP; 11, Ice Cold; 12, Ice Cold STYP; 13, 
Heart attack Arterial; 14 Heart attack Arterial STYP; 15, Heart attack normal control, 16, Heart attack normal Control STYP; 17, Heart attack; 18, Heart 
attack STYP; 19, Multiple Sclerosis normal control; 20, Multiple sclerosis normal control STYP; Multiple sclerosis; 22, Multiple Sclerosis STYP, 23 Sepsis; 
24, Sepsis STYP; 25, Sepsis normal control; 26, Sepsis normal control STYP. There was significant effects of treatments and peptides by two-way 
ANOVA. Analysis of the proteins shown across treatments produced a significant F Statistic by one-way ANOVA. Note that many proteins were not 
detected in the ice cold plasma
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Fig. 5  Quantile box plots showing the distribution of log10 precursor intensity by quantile box plots of HSA12, BHMT2, DHDDS, SLC35B1, LGALS7, 
SAT2, IQCJ-SCHIP1 fusion, THOC1, PTMA, MREG, ANXA4 and FYCO1 across the disease and control treatments. Box plots show log10 intensity versus 
treatment number for gene symbol indicated. Treatment ID numbers: 1, Alzheimer normal; 2, Alzheimer’s normal control STYP; 3, Alzheimer’s 
dementia; 4, Alzheimer’s dementia STYP; 5, Cancer breast; 6, Cancer breast STYP; 7, Cancer control; 8, Cancer control STYP; 9, Cancer ovarian; 10, 
Cancer ovarian STYP; 11, Ice Cold; 12, Ice Cold STYP; 13, Heart attack Arterial; 14 Heart attack Arterial STYP; 15, Heart attack normal control, 16, 
Heart attack normal Control STYP; 17, Heart attack; 18, Heart attack STYP; 19, Multiple Sclerosis normal control; 20, Multiple sclerosis normal control 
STYP; Multiple Sclerosis; 22, Multiple sclerosis STYP, 23 Sepsis; 24, Sepsis STYP; 25, Sepsis normal control; 26, Sepsis normal control STYP. There 
was significant effects of treatments and peptides by two-way ANOVA. Analysis of the proteins shown across treatments produced a significant F 
Statistic by one-way ANOVA. Note that many proteins were not detected in the ice cold plasma
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or biochemical methods. The striking level of agree-
ment between the results of random and independent 
sampling of plasma by mass spectrometry with those 
from cancer tissues, fluids or cells indicated that clini-
cal discovery of plasma by LC–ESI–MS/MS will be a 
powerful tool for clinical research. Peptide or proteins 
discovered by random and independent sampling of 
test samples might be confirmed by automatic tar-
geted LC–ESI–MS/MS [17–19] from a larger cohort of 

independent samples. It was possible to discover pep-
tides and/or proteins specific to breast cancer versus 
ovarian cancer and other diseases or normal plasma 
samples from many institutions using simple and dis-
posable sample preparation, common instrumenta-
tion from the fit of MS/MS spectra using simple cross 
correlation or goodness of fit for storage with stand-
ard SQL database and classical statistical analysis with 
generic software.

Fig. 6  QSER1 ANOVA analysis and Tukey–Kramer HSD multiple means comparison of breast versus ovarian cancer and other diseases and normal 
treatments. a All QSER1 peptides quantile plot; b QSER1 peptide QPKVKAEPPPK quantile plot; c All QSER1 peptides box plot see ANOVA below; d 
QSER1 peptide QPKVKAEPPPK box plot. Treatment ID numbers: 1, Alzheimer normal; 2, Alzheimer’s normal control STYP; 3, Alzheimer’s dementia; 4, 
Alzheimer’s dementia STYP; 5, Cancer breast; 6, Cancer breast STYP; 7, Cancer control; 8, Cancer control STYP; 9, Cancer ovarian; 10, Cancer ovarian 
STYP; 11, Ice Cold; 12, Ice Cold STYP; 13, Heart attack Arterial; 14 Heart attack Arterial STYP; 15, Heart attack normal control, 16, Heart attack normal 
Control STYP; 17, Heart attack; 18, Heart attack STYP; 19, Multiple Sclerosis normal control; 20, Multiple Sclerosis normal control STYP; Multiple 
sclerosis; 22, Multiple sclerosis STYP, 23 Sepsis; 24, Sepsis STYP; 25, Sepsis normal control; 26, Sepsis normal control STYP. There was significant effects 
of treatments and peptides by two-way ANOVA (not shown). One way ANOVA:Df Sum Sq Mean Sq F value Pr(> F), Treatment_ID 23 113.0 4.912 
16.55 < 2e−16 ***Residuals 808 239.9 0.297
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Supplementary information accompanies this paper at https​://doi.
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Additional file 1: Table S1. Breast versus ovarian MSMS TRYP and STYP 
where both X2 where the corrected delta frequency is greater than 9.

Abbreviations
TRYP: fully tryptic; TRYP STYP: fully tryptic and/or S, T or Y tryptic 
phosphopeptide.
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Table 5  The analysis of  mean peptide intensity per  gene 
symbol for  QSER1 protein by  ANOVA with  Tukey–Kramer 
multiple means comparison

Treatment ID numbers: 1, Alzheimer normal; 2, Alzheimer’s normal control 
STYP; 3, Alzheimer’s dementia; 4, Alzheimer’s dementia STYP; 5, Cancer breast; 
6, Cancer breast STYP; 7, Cancer control; 8, Cancer control STYP; 9, Cancer 
ovarian; 10, Cancer ovarian STYP; 11, Ice Cold; 12, Ice Cold STYP; 13, Heart attack 
Arterial; 14 Heart attack Arterial STYP; 15, Heart attack normal control, 16, Heart 
attack normal Control STYP; 17, Heart attack; 18, Heart attack STYP; 19, Multiple 
Sclerosis normal control; 20, Multiple sclerosis normal control STYP; Multiple 
sclerosis; 22, Multiple Sclerosis STYP, 23 Sepsis; 24, Sepsis STYP; 25, Sepsis normal 
control; 26, Sepsis normal control STYP. The Tukey–Kramer multiple comparison 
ranking of mean intensity from R is shown by letters

Treatment Mean SD Data N Tukey–Kramer

1 5.072769 0.302986 21 d

2 4.593409 0.511989 67 cde

3 4.633497 0.3285 26 bde

4 4.056312 0.161037 33 a

5 5.918212 0.760851 25 h

6 5.717592 0.763346 18 h

7 4.837276 0.216573 8 bdef

9 4.542693 0.65645 141 ceg

10 4.600209 0.640097 66 cde

11 4.512103 0.515631 8 acde

12 4.029774 0 4 acde

13 4.452935 0.491664 50 aceg

14 4.12479 0.351469 35 af

15 4.419355 0.198763 53 ace

16 4.324212 0.504538 32 ace

17 4.928881 0.947319 22 dg

18 4.173403 0.478339 36 ab

19 4.740343 0.428142 58 cde

20 4.80151 0.475907 35 de

21 4.749583 0.513686 36 cde

22 4.755553 0.517117 25 cde
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24 3.736293 0 4 abc

25 4.881761 0.953098 18 de
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