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Abstract

Background: Human umbilical cord-derived MSCs (hUC-MSCs) have been identified as promising seeding cells in
tissue engineering and clinical applications of regenerative medicine due to their advantages of simple acquisition
procedure and the capability to come from a young tissue donor over the other MSCs sources. In clinical applications,
large scale production is required and optimal cryopreservation and culture conditions are essential to autologous
and allogeneic transplantation in the future. However, the influence of cryopreserved post-thaw and long-term cul-
ture on hUC-MSCs remains unknown, especially in terms of specific protein expression. Therefore, biological charac-
teristics and proteomic profiles of hUC-MSCs after cryopreserving and long-term culturing were investigated.

Methods: Firstly, hUC-MSCs were isolated from human umbilical cord tissues and identified through morphology,
surface markers and tri-lineage differentiation potential at passage 3, and then the biological characteristics and prot-
eomic profiles were detected and compared after cryopreserving and long-term culturing at passage 4 and continu-
ously cultured to passage 10 with detection occurring here as well. The proteomic profiles were tested by using the
isobaric tags for relative and absolute quantification (iTRAQ) labeling technique and differential protein were con-
firmed by mass spectrometry.

Results: The results showed no significant differences in phenotypes including morphology, surface marker and
tri-lineage differentiation potential but have obvious changes in translation level, which is involved in metabolism, cell
cycle and other pathways.

Conclusion: This suggests that protein expression may be used as an indicator of hUC-MSCs security testing before
applying in clinical settings, and it is also expected to provide the foundation or standardization guide of hUC-MSCs
applications in regenerative medicine.
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to be seen as more advantageous in clinical applications
compared to embryonic stem cells [2]. Since the discov-
ery of MSCs in bone marrow in 1966, various tissues
have been reported as the sources of MSCs [3]. The iso-
lation of MSCs from human umbilical cord (hUC) has
been recognized as a major alternative source. Normally,
postnatal tissues after childbirth are discarded as medical
waste, and the harvest and utilization of human umbili-
cal cords is noninvasive and causes negligible bioethics
concerns [4]. The hUC-MSCs originate from newborns,
while the range of bone marrow derived MSC (BM-MSC)
donors’ ages is wide and the harvest process of bone
marrow is invasive [5]. A positive correlation between
donor ages and the accumulation of mutations in MSCs
has been observed in previous studies [6—8]. Moreover,
hUC-MSCs show lower immunogenicity after cell trans-
plantation compared to other sources derived MSCs [9].
Therefore, hUC-MSCs show better superiority than BM-
MSC:s in terms of source and their unique characteristics
make hUC-MSCs an extremely valuable candidate for
cell therapeutic medicine [5].

Conventionally, the dosages for MSCs transplantations
is 10° cells/kg body weight and the total amount of MSCs
for one patient is about 10% per cell therapy in clinical
trials [10]. Usually, the number of MSCs derived from
either autologous or allogeneic tissues is limited, and
it is necessary to expand MSCs in vitro before therapy.
However, the long-term cultivation of MSCs can result
in differentiation-related gene expression and mitochon-
drial morphology change, reactive oxygen species (ROS)
generation and cell senescence, which may deteriorate
MSCs features [11]. Therefore, the development of an
ideal technique is essential to large-scale MSCs produc-
tion and storage and it also requires minimal impact on
MSCs.

Cell cryopreservation is a widely used technology for
long-term storage of cells by cooling the cells to cryogenic
temperatures (— 196 °C in liquid nitrogen, for example)
[12]. In our previous study, we found that BM-MSCs of
a nonhuman primate vitrified with a high level (5.6 M)
of the penetrating cryoprotectant either DMSO or ethyl-
ene glycol (EG) resulted in changes of a large number of
transcripts [13]. Currently, the most widely used method
for MSCs cryopreservation is the slow-freezing approach
with using a low level of DMSO (1.5 M) as the penetrat-
ing cryoprotectant. However, the effects of slow-freezing
with a low level of DMSO on the global gene transcripts
and proteomics profiles of MSCs have not been studied
(Additional file 1: Table S1).

In the present study, we aimed to comprehend the
effects of conventional slow-freezing cryopreservation
and long-term cultivation on the proteomic profiles
of hUC-MSCs. The study will provide a basis for the
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influence of cryopreservation and cultivation on protein
expression, and help facilitate the applications of hUC-
MSC:s in cell therapeutic medicine.

Materials and methods

Ethics statement

The ethical approval was obtained in advance by the
Ethics Review Board of Ningxia Medical University and
General Hospital of Ningxia Medical University, and
informed patient consent for participation was obtained
from all subjects.

Isolation and culture of hUCs derived MSCs

Three hUCs collected from full-term births were used
and evaluated separately for this study. The hUC tissues
were sanitized with 75% alcohol for 5 min and trans-
ferred to the lab within 1 h in Hanks balanced salt solu-
tion (HBSS, Sangon biotech, Shanghai, China). The hUCs
were cut into 0.5x 0.5 cm pieces with sterile forceps
and curved scissors. The pieces were cultured in sterile
10 mm plastic Petri dishes containing 10 ml of low glu-
cose Dulbecco’s modified Eagle’s medium (DMEM, Gibco
BRL, Grand Island, NY, USA) supplemented with 10%
(v/v) fetal bovine serum (FBS, Gibco) and 1% (v/v) peni-
cillin/streptomycin (Gibco) at 37 °C in an incubator with
a humidified atmosphere of 5% CO, and the medium
was refreshed every 48 h. A large amount of fibroblast-
like cells around the hUCs tissue pieces appeared 1 week
later. The remained hUCs tissues were removed and these
primary fibroblast-like cells (passage 0) were passaged at
80% confluency by using 0.25% trypsin (Gibco). The cells
were resuspended in culture medium at a dilution ratio of
1:3 and expanded on a new plastic Petri dish to passage
1 [14]. The morphology, surface markers and differentia-
tion potency of MSCs were identified at passage 3.

Morphological and immunophenotypic characterization
of hUC-MSCs

The morphological characteristics of hUC-MSCs were
assessed under a light microscope (Nikon DIAPHOT
300, Japan) at primary culture and upon passaging in all
the experimental groups. The morphological images in
this present study were taken at 20 x magnification. The
expression of cell surface markers were evaluated using
a Human MSC Analysis Kit (BD Biosciences, San Jose,
CA) with a C6 flow cytometer (BD Biosciences, San Jose,
CA) at 3rd, 4th and 10th passages. Briefly, hUC-MSCs
were collected and washed with 500 pL of PBS (contain-
ing 3% FBS, PBSF) and the concentration was adjusted at
1 x 10° cells/mL by using a hemacytometer. Then a total
of 100 pL of the cell suspension (approximately 5 x 10°
cells) was distributed in a 1.5 mL centrifugal tube and
incubated with 5 pL (10 pg/pL) of human monoclonal
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antibodies against a positive (CD44, CD73, CD90 and
CD105) and negative cocktail (including CD34, CD45,
CD14, CD19, and HLA-DR) at room temperature for
30 min according to the manufacturer’s instructions.
Unbound antibodies were washed off with PBS and sub-
sequently the cells were resuspended in 500 pL of PBSF
mixture before flow cytometric testing [13].

Evaluation of the differentiation potential of hUC-MSCs

For adipogenic differentiation, hUC-MSCs were seeded
into 24-well plates and cultured for 12 h at a density of
8 x 10* cells per well. Subsequently, the medium was
substituted with the adipogenic differentiation medium
(Biological Industries, Israel) for 21 days, and the
medium was refreshed every 3 days. The induced cells
were stained with Oil Red O in a MSCs Adipo-Staining
Kit (XP Biomed Ltd., Shanghai, China) according the
instructions.

For osteogenic differentiation, hUC-MSCs were seeded
into 24-well plates and cultured for 12 h at a density of
4 % 10* cells per well. Subsequently, the medium was sub-
stituted with the osteogenic differentiation medium (Bio-
logical Industries, Israel) for 21 days, and the medium
was refreshed every 3 days. The induced cells were
stained with alizarin red solution in a MSCs Osteo-Stain-
ing Kit (XP Biomed Ltd., Shanghai, China) according the
instructions.

For chondrogenic differentiation, 2 x 10> hUC-MSCs
were pelleted in 15-mL centrifuge tubes and cultured
with the chondrogenic differentiation medium (Bio-
logical Industries, Israel) for 21 days and the medium
was refreshed every 3 days. The chondroid pellets were
sectioned by a freezing microtome and the slices were
stained with toluidine blue in a MSCs Chondro-Staining
Kit (XP Biomed Ltd., Shanghai, China) according the
instructions [15].

All differentiation evaluations were repeated 3 times.

Cryopreservation of hUC-MSCs

The hUC-MSCs from the three donors were harvested
at passage 4 and 10 for the cryopreservation assay when
the cells reached 80% confluency. The cell suspension
was divided into two equal aliquots at a density of 2 x 10°
cells/mL. One of the aliquots without cryopreservation
was sub-cultured in fresh medium for 24 h, and cell via-
bility, immunophenotype surface markers, proliferation
and metabolic activity were subsequently examined as a
non-frozen control. The other cells were cryopreserved
by the conventional cell freezing method with the freez-
ing medium composed of DMEM medium supplemented
with 10% FBS and 10% DMSO. The mixture of freezing
medium and hUC-MSC suspension (1 mL) in a 1.8 mL
cryovial containing a density of 1x 10° cells/mL was
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cooled at approximately 1 °C/min from 25 to — 80 °C in a
freezing container (Nalgene, Rochester, NY) for 12 h and
then the cryovials were plunged directly into liquid nitro-
gen for storage. This is the most commonly used method
and equipment for MSCs cryopreservation in laborato-
ries all over the world [16, 17]. After being stored in liq-
uid nitrogen for 24 h, the cells were rapidly warmed by
immersing the cryovial in a 37 °C water bath for 5 min.
Post-thawed cells were cultured for 24 h for recovery
and subsequently evaluated as described in the follow-
ing assays. The cryopreserved MSCs (abbreviated as “C”
from now on) were subcultured for 24 and 48 h at P4 and
P10, respectively, and non-cryopreserved MSCs (abbre-
viated as “N” from now on) cultured for 24 and 48 h at
same passages were used as controls. The schematic illus-
tration of the procedure was shown in Fig. 1. A total of 8
groups of hUC-MSCs were involved in this study as fol-
lows: non-cryopreserved and sub-cultured for 24 h at P4
(P4N24), cryopreserved and sub-cultured for 24 h at P4
(P4C24), non-cryopreserved and sub-cultured for 48 h
at P4 (P4N48), cryopreserved and sub-cultured for 48 h
at P4 (P4C48), non-cryopreserved and sub-cultured for
24 h at P10 (P10N24), cryopreserved and sub-cultured
for 24 h at P10 (P10C24), non-cryopreserved and sub-
cultured for 48 h at P10 (P10N48) and cryopreserved and
sub-cultured for 48 h at P10 (P10C48).

Measurement of cell viability

The viability of cells from P4N24, P4C24, P4N48, P4C48,
P10N24, P10C24, P10N48 and P10C48 groups were
measured by trypan blue dye (Solarbio, Beijing, China)
exclusion assay. Ten pL of cell suspension was mixed 10
uL 0.4% w/v trypan blue solution for 5 min, and the dead
cells were stained and counted with a haemocytometer
under a light microscope.

Proteomics analysis and targeted quantitative detection

of hUC-MSCs

The cells from non-cryopreserved groups (P4N24,
P4N48, P10N24, P10C24, and P10N48) and cryopre-
served groups (P4C24, P4C48, P10C24 and P10C48)
groups were collected for proteomic profile detection.
The proteomics procedures were performed by PTM
Biolabs Lnc. (Hangzhou, Zhejiang, China). Briefly, a cell
sample was sonicated by high intensity ultrasonic proces-
sor in lysis buffer of urea and protease inhibitor cocktail,
and the remaining cell debris was removed by centrifu-
gation. The protein concentration of the supernatant was
collected and quantified with BCA kit (Thermo Fisher,
USA), and prokaryotic standard protein was added for
detecting quality control [18]. Then, the protein solu-
tion was reduced with dithiothreitol and alkylated with
iodoacetamide, and the urea concentration was diluted
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Fig. 1 A schematic illustration of the procedure for hUC-MSCs cryopreservation and long-term culture. LN,: liquid nitrogen. P4N24:
non-cryopreserved and sub-cultured for 24 h at P4. P4C24: cryopreserved and sub-cultured for 24 h at P4, P4AN48: non-cryopreserved and
sub-cultured for 48 h at P4, P4C48: cryopreserved and sub-cultured for 48 h at P4, P10ON24: non-cryopreserved and sub-cultured for 24 h at P10,
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by adding tetraethylammonium bromide, and then the
protein samples were digested by trypsin. After trypsin
digestion, the peptide was desalted and processed accord-
ing to the manufacturer’s protocol for TMT/iTRAQ Kkit.
The tryptic peptides were fractionated into fractions by
high pH reverse-phase HPLC using Agilent 300 Extend
C18 column, and the peptides were dissolved by acetoni-
trile and analyzed by tandem mass spectrometry in Q
ExactiveTM Plus (Thermo) coupled online to the EASY-
nLC 1000UPLC. The data of tandem mass spectrometry
were processed using Maxquant search engine (v.1.5.2.8)
and annotation results from database were collected for
analysis. Quantitative analysis of differentially expressed

proteins was also performed depending on Parallel Reac-
tion Monitoring (PRM) technology by PTM Biolabs Lnc.
according to their commercial manufacturer’s instruc-
tions. The pre-processing of samples as well as proteom-
ics analysis, besides, quantitative analysis was used as a
standard to quantify special protein from samples.

Statistical analysis

The data from viability and markers expression were
significantly analyzed statistically using Graphpad
software (GraphPad Prism; Graphpad Software, Inc.,
San Diego, CA) and presented as the mean & SD. Com-
parative assessment of mean value among various
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factors was performed using ANOVA and unpaired ¢
test and a P-value<0.05 was considered statistically
significant.

Differential protein screening was based on a 1.3-
fold change, and the ratio between the samples at more
than 1.3-fold change or less than 1/1.3-fold change
were considered up-regulated or down-regulated
trend P-value<0.05. For further study of the hier-
archical clustering, all the categories were obtained
and enriched in clusters depending on P-value<0.05,
and the cluster membership were visualized by a heat
map using the “heatmap.2” function from the “gplots”
R-package. Proteins were classified by Gene Ontology
(GO) annotation, which was derived from the UniProt-
GOA database (www. http://www.ebi.ac.uk/GOA/). The
pathways of different proteins were classified accord-
ing to the Kyoto Encyclopedia of Genes and Genomes
(KEGQG) database website.

Identified proteins domain functional description
was annotated by InterProScan based on InterPro
(http://www.ebi.ac.uk/interpro/) domain database.
These enrichment analyses were tested according
to the database of identified proteins and employed
two-tailed Fisher’s exact test, all terms with corrected
P-values <0.05 were considered significantly enriched
differentially expressed proteins.

Results

Basic characterization of hUC-MSCs

During primary culture, the spindle-shaped and
fibroblast-like cells were dispersed around the shred-
ded umbilical cord tissues. These cells grew adhe-
sively in plastic dishes in a scattered manner, formed
colonies and appeared heterogeneously regarded as
hUC-MSCs of passage 0 (PO, Fig. 2a). The hUC-MSCs
colonies at passage 0 were extended to passage 3 (P3)
with subsequent subculture, and the P3 hUC-MSCs
also showed a spindle-shaped and fibroblast-like mor-
phology (Fig. 2b). The surface marker profiles of the
hUC-MSCs were analyzed at P3 by flow cytometry.
The percentage of positively expressed surface mark-
ers was 100.0+£0.0% of CD44, 99.3+0.2% of CD73
and 85.0 £ 1.4% of CD105, and the percentage of nega-
tive expressed cocktail surface markers was 0.2+0.1%
(Fig. 2c-h). After adipogenic, osteogenic and chondro-
genic differentiation, the P3 hUC-MSCs formed numer-
ous neutral lipid droplets in the cytoplasm identified
by Oil Red O staining (Fig. 2i), mineral accumulation
and bone nodules formation was identified by alizarin
red staining (Fig. 2j) and proteoglycan and hyaluronic
acid accumulation was identified by alcian blue staining
(Fig. 2k).
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Effect of long-term culture and cryopreservation

on the biological characteristics of hUC-MSCs

As shown in Fig. 3a, the viability of hUC-MSCs were
significantly decreased after instant freezing and thaw-
ing (abbreviated as “C” groups from now on) com-
pared to non-cryopreserved control (abbreviated as “N”
groups from now on) either at passage 4 (P4, N vs. C,
99.61£0.22% vs. 94.42+£1.53%) or passage 10 (P10, N
vs. C, 99.44 +0.51 vs. 93.82+2.13%). After a sub-culture
for 24 h or 48 h post thawing, the hUC-MSCs either at
P4 or P10 remained to possess a high level expression
of positive surface markers (CD44, CD73, CD90 and
CD105) and barely expressed negative markers of MSCs,
and no significant differences were observed compared
to non-cryopreserved controls. The results suggested
that the expression of surface markers was not affected
by cryopreservation and long-term culture (Fig. 3b). The
morphology of cells from non-frozen control and cryo-
preserved groups following a 24 h and 48 h sub-culture
post thawing are shown in Fig. 3c. No obvious morpho-
logical changes were observed among the eight groups.
Similar to the cells from control groups, the differen-
tiation potency of hUCs from N24, N48, C24 and C48
groups at P4 and P10 showed no obvious difference eval-
uated by adipogenic (Fig. 4a), osteogenic (Fig. 4b) and
chondrogenic differentiation (Fig. 4c).

Effect of cryopreservation and long-term culture

on proteome profiles of hUC-MSCs

The number of significantly modulated proteins of hUC-
MSCs among the 8 groups are summarized in Fig. 5a.
These results indicated that the proteome profiles of
hUC-MSCs were affected by either long-term culture
or cryopreservation. The functional enrichment analy-
sis according to Gene Ontology (GO) of differentially
expressed proteins among hUC-MSCs from the 8 groups
was summarized in Fig. 5b—d. The heatmap graphs of the
GO display the distribution of the biological terms pre-
sented in molecular function (Fig. 5b), biological process
(Fig. 5¢) and cellular component (Fig. 5d). In molecular
function, protein kinase activity and microtubule motor
activity were affected by continuous culture from 24 h to
48 h at P4 without cryopreservation (P4N24 vs. P4N48).
Retinoid, isoprenoid binding and cytokine activity were
affected by long-term culture from P4 to P10 with-
out cryopreservation (P4N48 vs. P10N48). Oxidore-
ductase, hydrolase and peptidyl-proline dioxygenase
were affected by cryopreservation and sub-culture for
48 h at P10 compared to P4 (P4C48 vs. P10C48), which
were shown in Fig. 5b. In biological process as shown
in Fig. 5¢, regulation of nuclear division was affected by
continuous culturing from 24 h to 48 h at P4 without
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(b) and morphology (c) between non-cryopreserved (N) and

cryopreservation (P4N24 vs. P4N48), protein activation
cascade was affected by cryopreservation and sub-cul-
ture for 24 h at P4 compared to non-cryopreserved and
sub-cultured for 24 h (P4N24 vs. P4C24), regulation of
smooth muscle cell proliferation was affected by long-
term culture from P4 to P10 without cryopreservation
(P4AN48 vs. P10N48), cell proliferation and programmed
cell death were affected by continuous culturing from
24 h to 48 h at P10 (P10N24 vs. P10N48), and cell com-
munication and signal transduction were affected by
post-thawing and sub-culturing for 24 h at P4 compared
to non-cryopreservation at P10 (P10N24 vs. P10C24). In
cellular component as shown in Fig. 5d, cytoskeleton and
chromosome passenger complex were affected by contin-
uous culture from 24 h to 48 h at P4 (P4N24 vs. P4N48),
extracellular region and lysosome were affected by long-
term culture from P4 to P10 without cryopreservation
(P4N48 vs. P10N48), nuclear replication fork, lysosomal
and endoplasmic reticulum lumen were affected by cryo-
preservation and sub-culture for 48 h at P10 compared to
P4 (P4C48 vs. P10C48).

In order to further analyze the effect of cryopreser-
vation on hUC-MSCs function, differential proteins

enriched in biological processes of GO classification hav-
ing known identities in MSCs functions. The functions
of these differentially hUC-MSCs proteins are listed in
Table 1, which are associated with differentiation, immu-
noregulation, wound healing and regeneration, apoptotic
signaling pathway, oxidation resistance, cartilage devel-
opment, regulation of cytokine production, cell migra-
tion and others. Specific protein information and the fold
of change in different groups were shown in Table 2.
Protein domain was analyzed after cryopreserva-
tion and sub-culture for 24 h and 48 h at P4 and P10,
respectively, compared with non-cryopreserved groups
as shown in Fig. 5e. The results showed that immuno-
globulin-like fold domain was affected by the continuous
culture from 24 h to 48 h at P4 without cryopreservation
(PAN24 vs. P4N48). BRICHOS domain and galactose-
binding domain-like were affected by long-term culture
from P4 to P10 without cryopreservation and sub-cul-
ture for 24 h (P4N24 vs. P10N24). Chemokine domain
was affected by continuous culturing from by long-term
culture from P4 to P10 without cryopreservation and
sub-culture for 48 h (P4N48 vs. P10N48). Hydroxy-
lase, iron-dependent dioxygenase, glycoside hydrolase
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Fig. 4 Comparison of adipogenic (a), osteogenic (b) and chondrogenic (c) differentiation potency between non-cryopreserved (N) control and
cryopreserved (C) groups after being sub-cultured for 24 h or 48 h at P4 and P10, respectively
.

superfamily and thioredoxin-like fold domain were
affected by cryopreservation and sub-culturing 48 h at
P10 compared to P4 (P4C48 vs. P10C48).

In addition, differentially expressed proteins were
also analyzed by KEGG (Kyoto Encyclopedia of Genes

and Genomes) to show the network of pathway interac-
tions (The raw data of differentially expressed proteins
enriched in KEGG database as shown in Additional file 1:
Table S1). The results as shown in Fig. 6a indicated that
progesterone mediated oocyte maturation, complement
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Table 1 Biological processes classification of differential identified proteins in MSCs

Biological processes Gene name

Differentiation

GATA6, DKK1, STC1, PDGFRB, COL5A2, FST, CCNB1, AURKA, TOP2A, INHBA, COL1TAT, ANLN, JUN,

SEMA7A, NCAM1, COL12A1, NRP2, FBN2, HGF

Immune system regulation process

TNFAIP3, KIF2C, PTX3, TMBIM1, IGHGT, JUN, NDRG1, NCAM1, MYO10, KIF22, COL1AT, RACGAPT,

SEMATA, KIF11, INHBA, MT2A, FST, C3, GEM, TOP2A, SERPINET, KIF23, ANLN, PDCD1LG2, CRISPLD2,

JUN
Wound healing and regeneration

TNFAIP3, SERPINB2, GATA6, MKI67, SERPINET, F3, FOSL1, AURKA, COLTA1, DCN, NRP2, HGF, JUN, C3,

PDGFRB, CCNBT, TFPI2, HIST2H3A, CCNA2

Apoptotic signaling pathway

BIRCS, STK17B, F3, TNFAIP3, SERPINET, INHBA, TMBIM1, TIMP3, TOP2A, CHEK1, HGF, PDGFRB, TPX2,

GATA6, SERPINB2, AURKA, CCNB1, TNFAIP3, NUAKT, FOSL1, AURKB, CPEB4, PLK1, JUN, ARAF, AMIGO2

Myeloid cell differentiation and ossification
Oxidation resistance

INHBA, FBN2, STC1, COL5A2, JUN, HGF, COL1AT, SEMA7A
TNFAIP3, PTX3, NDRGT, TIMP3, SERPINET, COL1AT, NDRGT1, STK17B,AURKA, PLK1, PDGFRB, CPEB4,

AURKB, AMIGO2, TMBIM1, JUN, STC1, ARAF, GATA6, HGF, FOSL1, CCNB1, TOP2A, F3, CPEB4, BIRCS,

SERPINB2, INHBA, CCNA2
TNFAIP3, IGHGT, MYO10, DCN, C3, HGF, PDCD1LG2, JUN, SEMA7A, FST, INHBA, PTX3, TOP2A, SERPINET,

Adaptive immune response
NCAM1, ANLN, MT2A

Inflammatory response

TNFAIP3, PTX3, SERPINET, PDCD1LG2, SEMA7A, F3, HGF, C3

Interferon-gamma-mediated signaling pathway PDCD1LG2, NCAM1, INHBA, MT2A

Cartilage development

Regulation of cytokine production
Angiogenesis

Antigen processing and presentation

Cell migration

Transforming growth factor betal production

Response to growth factor
DCN, LUM

Aging
Regulation of endothelial cell proliferation

STC1, BNC2, LUM, COL1AT, STC1, COLTAT, MEX3C

GATA6, LUM, TNFAIP3, SERPINET, PDCD1LG2, SEMA7A, INHBA, HGF, C3

SERPINE1, GATA6, PDGFRB, F3, JUN, HGF, NRP2, C3

RACGAPT, TNFAIP3, CCNA2, KIF22, INHBA, KIF11, KIF2C, KIF23

F3, STC1, SERPINET, SMURF2, DCN, COL1AT1, PDGFRB, HGF, NRP2, JUN

GATA6, COLTAT, C3, LUM, JUN, SERPINET, TNFAIP3, PDCD1LG2, SEMA7A, HGF, INHBA

PDGFRB, GATA6, NRP2, DKK1, SHCBP1, SHCBP1, CCNA2, SMURF2, COLTA1, SMURF2, JUN, FBN2, HGF,

CHEKT1, SERPINET, AURKB, PDGFRB, DCN, JUN
SERPINE1, GATA6, DCN, TNFAIP3, THBS2, HGF, F3, C3, JUN, NRP2

and coagulation cascades and protein digestion related
pathways were affected by continuous culturing from
24 h to 48 h at P4 (P4N24 vs. P4N48) without cryo-
preservation. Retinol metabolism and vitamin absorp-
tion related pathways were affected by long-term culture
from P4 to P10 without cryopreservation and sub-culture
for 24 h (P4N24 vs. P10N24). Steroid hormone biosyn-
thesis related pathways was effected by post-thawing and
sub-culturing for 48 h compared to non-cryopreserva-
tion and sub-culture for 48 h at P4 (P4N48 vs. P4C48).
Nicotinamide metabolism, antifolate resistance and
staphylococcus aureus infection related pathways (Not
contaminated) were affected by long-term culture from
P4 to P10 without cryopreservation and sub-culture for
48 h (P4N48 vs. P10N48). Glycosaminoglycan degrada-
tion and DNA replication related pathways were affected
by cryopreservation and sub-culture for 48 h at P10 com-
pared to P4 (P4C48 vs. P10C48). In addition, the differen-
tially expressed proteins of the enriched KEGG pathway
were listed as Fig. 6b, the red and blue present up-reg-
ulaed and down-regulated proteins, respectively. These
results indicated that the expression of hUC-MSCs pro-
teins which are involved in many pathways were changed

by cryopreservation as well as long-term culturing at P4
and P10.

Verification of cryopreservation and long-term culture
induced candidate proteins by PRM

The differentially expressed proteins were separated into
several categories according to their functions by GO
and KEGG enrichment analysis, to validate the results of
MS and to compare the influence mechanisms of cryo-
preservation and long-term culture on hUC-MSCs, we
used PRM analysis to assess the abundance of 14 candi-
date proteins whole abundance changes in response to
hUC-MSCs cryopreservation and long-term culture as
determined by TMT. The 14 differentially expressed pro-
teins as well as enriched various pathways were selected
from 4 groups (P4N24 vs. P4C24, P4N24 vs. P10N24,
P4C24 vs. P10C24, P10N24 vs. P10C24) and involved
in tdioxygenase activity, cell development, extracellular
matrix, oxidoreductase activity, reproductive process,
hydrolase activity, ATP binding, protein kinase activity,
immune process, cell growth and division. As shown in
Table 3, 14 proteins in PRM analysis was consistent with
the results of TMT-based quantitation results. Although
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Table 2 Differential proteins associated with MSCs function

P . P4N24 | PAN24 | PAN24 | PAN48 | PAN4S | P4C24 | P4C24 | P4C48 |P10N24|P10N24|P10N48 [P10C24
rotein
Gene name VS. VS. VvS. VS. VS. VS. VS. VS. VS. VS. VS. VS.

P4N48 | P4C24 [P10N24| P4C48 [P10N48|P10C48|P10C24 |[P10C48|P10N48|P10C24|P10C48 [P10C48
Q86SJ2 |AMIGO2 0.671 NS NS 1.422 | 1.377 | 0.749 NS NS NS NS NS NS
QINQW6 [ANLN 1.861 NS 1.363 | 0.741 NS NS 1.711 | 2.167 | 1.620 | 1.335 | 1.354 | 1.642
P10398 |ARAF 0.760 NS 0.766 | NS NS NS NS 0.741 NS NS NS NS
014965 |AURKA 1.930 NS NS NS NS NS NS NS 1.725 | 1.429 NS NS
Q96GD4 [AURKB 1.592 NS 1.308 | NS NS NS NS NS 1.398 NS NS NS

accession

015392 BIRCS 1.612 NS NS NS NS NS 1.622 | 2.275 | 1.803 NS NS 1.791
P01024 |C3 3.316 _I 1.347 | 1.409 NS NS 0.724 NS NS 0.692 NS
P20248 |CCNA2 1.845 NS 1.324 | NS NS 1.369 | 1.408 | 1.689 | 1.545 NS NS NS
P14635 |CCNBI 1.751 NS 1.312 | 0.734 | NS 1.488 | 1.864 | 2.181 | 1.631 NS NS NS
014757 |CHEK1 1.331 NS NS NS NS NS 1.390 | 1.928 NS NS 1.367 | 1.613

Q99715 |COLI12A1 0.723 NS 0.706 | 1.459 | NS NS 0.714 | 0.508 NS NS 0.766 | 0.585
P02452 |COL1Al 0.707 NS NS NS 1.302 NS 0.725 | 0.630 NS NS 0.603 | 0.681
P05997 |COL5A2 0.768 NS NS NS NS NS 0.742 | 0.629 NS NS 0.691 | 0.683

QI17RY0 (CPEB4 1.372 NS NS NS NS NS NS NS NS NS NS NS
QY9HOBS [CRISPLD2 | 0.557 NS NS 1.662 | NS NS NS 0.537 | 0.608 NS NS 0.638
P07585 [DCN 0.760 NS NS NS NS 0.744 | 0.619 | 0.520 NS NS 0.715 | 0.626
094907 |DKK1 1.584 NS 1.651 | 0.703 | 1.387 NS 1.806 | 2.744 | 1.331 | 1.387 | 1.391 NS
P13726 |F3 1.414 | 1.408 | 0.754 | NS NS NS NS 1.790 | 1.852 | 1.903 NS 1.369
P35556 [FBN2 0.762 NS NS NS NS NS NS NS NS NS NS NS
P15407 [FOSLI 1.775 NS NS |[0.753 | NS NS 1.736 | 1.619 | 1.494 | 1.643 NS NS
P19883 [FST 2.036 NS NS | 0.581 NS NS 1.528 | 1.894 | 1.880 | 1.719 NS 1.452
Q92908 |GATAG6 0.746 NS NS NS 0.728 NS NS NS NS NS NS
P55040 |GEM 1.308 NS NS | 0.663 | NS NS 1.321 | 1.675 | 1.320 NS NS NS
P14210 [HGF 0.767 NS NS 1.453 | 1.448 NS NS NS NS NS NS NS
Q71DI3 [HIST2H3A | 1.445 NS 1.572 | NS 1.333 | 1.339 | 1.500 | 1.809 NS NS NS 1.614
P01857 [IGHGI 2.704 | 2.998 -I 1.524 | NS 1.374 | 1.663 NS NS NS NS NS
P08476 [INHBA 1.478 NS NS NS NS NS NS NS 1.373 | 1.592 NS NS
P05412 (JUN 1.350 NS NS NS 1.337 NS 1.718 | 1.584 | 1.467 NS NS NS
P52732 [KIF11 1.417 NS 1.313 | NS NS NS 1.587 | 2.325 | 1.307 NS 1.496 | 1.794
Q14807 |KIF22 1.413 NS NS NS NS NS NS 1.433 | 1.311 NS NS NS
Q02241 |KIF23 1.417 NS NS NS NS NS 1.590 | 2.307 NS NS 1.753 NS
Q99661 [KIF2C 1.435 NS NS NS NS NS 1.449 | 2.158 NS NS 1.499 | 1.828
P51884 (LUM 0.627 NS NS NS NS 0.572 | 0.538 NS NS NS NS 0.722
Q5U5Q3 [MEX3C 0.769 NS NS NS NS NS NS NS 0.768 | 0.746 NS NS
P46013 [MKI67 1.458 NS 1.473 | 0.760 | NS NS 1.694 | 2.337 NS NS 1.452 | 1.715
P02795 [MT2A 1.383 | 0.732 NS | 0.701 NS 1.324 NS 2.449 | 1.650 NS 1.693 | 2.624
Q9HD67 MYO10 1.300 NS NS NS NS NS NS NS 1.402 NS NS NS

P13591 [NCAMI1 0.747 NS NS NS 1.424 NS NS NS NS NS NS NS
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Q92597 |NDRGI1 1.450 NS NS NS NS 1.462 NS NS NS NS NS NS
060462 [NRP2 0.655 NS 0.632 | 1.464 | NS NS NS 0.638 NS NS NS NS
060285 [NUAK1 0.730 NS NS NS NS NS NS 0.751 NS NS NS NS
Q9BQ51 PDCDILG2| 1.534 | 1.350 NS NS NS NS NS NS 1.339 NS 1.534 NS
P09619 [PDGFRB 0.700 NS NS NS NS NS NS NS NS NS NS NS
P53350 |PLK1 1.617 NS NS NS NS NS 1.677 | 1.819 | 1.450 NS NS 1.407
P26022 [PTX3 1.354 | 1.313 NS | 0.672 | NS 0.693 NS 1.699 | 1.357 | 1.432 NS NS
Q9HOH5 RACGAPI | 1.392 NS NS NS NS NS 1.501 | 2.203 NS NS 1.626 | 1.747
075326 |SEMATA 1.647 NS NS [0.740 | NS NS 1.701 | 1.792 | 1.618 | 1.638 NS NS
P05120 [SERPINB2 | 1.505 NS NS [0.736 | NS NS NS NS 1.309 NS NS NS
P05121 [SERPINE1 | 1.686 NS NS NS NS NS NS NS 1.595 | 1.730 NS NS
P52823 STC1 1.794 NS 0.556 | NS | 0.647 | 1.734 NS NS 2.088 | 2.108 NS NS
094768 |STK17B 1.343 NS NS NS NS NS NS NS 1.582 | 1.571 NS NS
P48307 [TFPI2 1.731 NS 0.655 | NS | 0.526 | 1.491 NS NS 1.391 | 1.981 | 1.780 NS
P35442 [THBS2 0.731 NS NS NS NS NS 0.768 | 0.694 NS NS NS 0.706
P35625 [TIMP3 1.529 NS 0.730 | NS NS NS 1.428 | 1.336 | 1.730 | 1.850 NS NS
Q969X1 [TMBIM1 1.602 NS NS NS NS NS NS NS NS NS NS NS
P21580 [TNFAIP3 1.494 NS NS NS NS 1.357 | 1.327 NS NS NS NS NS
P11388 [TOP2A 1.782 NS NS [0.733 | NS 1.439 | 1.584 | 2.334 | 1.679 NS 1.407 | 2.119
QIULWO [TPX2 1.663 NS NS [0.758 | NS NS 1.393 | 1.778 | 1.517 NS NS 1.495

Page 12 0f 18

Red is up-regulation and blue is down-regulation, NS is no significant difference

the fold changes of SMTN in P4C24/P10C24, SEMA7A
in P4C24/P10C24 and P10N24/P10C24 analyzed by PRM
more than TMT, whereas the TMT and PRM results all
showed a rising trend. Our PRM results were in consist-
ent with the data from TMT analysis (Table 3), which
further confirmed the credibility of the proteomics data.

Discussion

Human umbilical cord-derived MSCs are promising
seeding cells in cell therapy and regenerative medicine
due to their unique advantages. Cryopreservation plays
an important role in the maintenance of MSCs function
and avoids adverse effects caused by long-term culture
[19]. DMSO is a widely used penetrating cryoprotect-
ant for MSCs cryopreservation when using the conven-
tional slow freezing protocol. Although efforts for the
reduction of DMSO concentrations have been made to
alleviate the adverse reactions of DMSO and decreased
DMSO concentration (as low as 2% combined with
other cryoprotectants) has been successfully employed
[20], the viability of MSCs cannot be guaranteed. In
addition, the combination of multiple penetrating cryo-
protectants is not conducive to understand the adverse
mechanisms of each cryoprotectant on cell recovery
or engraftment. In our previous study, DMSO and

ethylene glycol (EG) have been used for vitrification of
MSCs, and the results showed that the viability of cells
vitrified by DMSO is less than those by EG. However,
the transcripts of larger numbers of genes affected by
EG are much more than those by DMSO [13]. There-
fore, the method of conventional slow freezing method
by using 10% DMSO was selected in the present study
and it is still the most widely used method at present
[16, 17]. In regard to the store period (24 h) of MSCs in
liquid nitrogen, whether long-term storage more than
24 h will have more profound effects remains need to
be further studied [13].

In this present study, the conventional slow freez-
ing method using 10% DMSO was used for MSC cryo-
preservation. The freezing and thawing process decrease
the viability of cells either at P4 (94.42+1.53%) or P10
(93.82£2.13%). In previous studies, Fong et al. reported
that hUC-MSCs viability was 85-90% after thawing by
using the same slow cooling method [21], and Woods
et al. reported the post-thaw viability of human MSCs
was about 91% by using 1.0 M (about 7.1%, w/v) and
1.5 M (about 10.65%, w/v) DMSO freezing with this
method [22]. Our results showed similar viabilities com-
pared to the previous studies. Although the conventional
slow freezing method has been widely used and can also
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Fig. 6 Heatmap of pathways (a) and differentially expressed proteins (b) enriched according to KEGG database among the eight groups
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Table 3 Comparison of the quantification results between TMT and PRM of the 14 candidate different expression

proteins
Protein accession  Proteins  Signature peptides P4AN24/ P4N24/ P4C24/ P10N24/
P4C24 P10N24 P10C24 P10C24
TMT PRM TMT PRM TMT PRM TMT PRM
Q8IVL6 P3H3 DLETPPHWAAYDTGLELLGR 103 117 09 106 091 086 098 096
P53814 SMTN AQEIEAATLAGRLQDGTPQAALSPLTPAR 1.04  1.04 123 127 192 329 163 268
Q96CG8 CTHRC1 QCSWSSLNYGIDLGKVLFSGSLR 147 208 089 081 0.61 039 1.01 1.00
075326 SEMA7A DPYCGWDQGR 106 1.09 110 1.08 170 3.03 164  3.08
P35354 PTGS2 SHLIDSPPTYNADYGYKSGLDDINPTVLLK 140 279 057 050 081 053 200 299
Q9NQW6 ANLN LLLIATGKGFLTIFEDVSGFGAWHR 1.06 108 136 132 1.71 244 134 199
P58335 ANTXR2 VSPVGETYIHEGLKLDALWALLR 087 097 075 070 118 1.7 136 163
P48307 TFPI2 LQVSVDDQCEGSTEKTCDAFTYTGCGGNDNNFVSR  1.08 096 066 047 120 123 198 251
Q13642 FHL1 FWHDTCFR 156 145 206 200 169 253 128 184
Q02241 KIF23 ALLQEFDNAVLSK 096  1.05 129 149 1.59 182 118 1.28
Q9HOH5 RACGAPT  SIGSAVDQGNESIVAK 097 087 125 156 1.50 247 1.17 138
P53350 PLK1 LILYNDGDSLQYIER 096  1.01 127 189 168 270 127 144
P00749 PLAU FEVENLILHK 062 042 043 027 123 150 176 230
000762 UBE2C GISAFPESDNLFKLSLEFPSGYPYNAPTVK 102 1.05 127 152 163 206 1.31 142

obtain better viability, profound influence of the freezing
process and cryoprotectant on the transcript and protein
function of hUC-MSCs remains unknown.
Conventionally, the morphology, surface marker
expression and tri-lineage differentiation potency are
regarded as a “gold standard” for identifying MSCs
according to the International Society for Cellular Ther-
apy. In this study, there are no significant differences
between non-cryopreserved and post-thaw following
sub-culture 24 or 48 h in morphology, surface markers
and tri-lineage differentiation potency at P4 and P10.
Hence, these results concluded that cryopreservation
and long-term culture did not affect the characteristics
of hUC-MSCs, which are consistent with previous stud-
ies [13, 23]. To our knowledge, almost all of the studies
have shown that cryopreservation does not affect the
morphology, surface markers and differentiation potency
as description in a review [24] and proven by our previ-
ous [13] and present study. However, our previous study
revealed that though the morphology, surface markers
and tri-lineage differentiation potency of MSCs were
not affected by cryopreservation, the global gene expres-
sion was affected either vitrified with DMSO or EG as
a cryoprotectant [13]. In the present study, many pro-
tein’s expression was affected by cryopreservation and
long-term culture revealed by the proteomics analysis.
A total of 47 and 81 proteins expressed were affected by
freezing and thawing at P4 (P4N24 vs. P4C24) and P10
(P1ON24 vs. P10C24), respectively, as well as cell com-
munication and signal transduction were obviously
affected though GO analysis. Therefore, in our opinion,

the traditional identification standards based on qualita-
tive detection (post thaw viability, morphology, surface
markers and tri-lineage differentiation potency) may be
insufficient for the evaluation of the change of biological
characteristics after cryopreservation or environmental
stimulus during long-term culture. Therefore, it is nec-
essary to explore quantitative methods for MSCs qual-
ity evaluation such as a protein targeting quantification
method in preclinical or clinical application.

Previous studies have reported that cryopreservation
can affect the immunomodulatory properties of MSCs,
and the levels of heat shock proteins increased and the
inflammatory response was impaired within 24 h after
thawing. However, these studies considered that the
function of MSCs would be completely recovered after
24 h of culturing [25-27]. The protein expression recov-
ery of cryopreserved MSCs is essential to maintain their
properties after transplantation in vivo. In this present
study, the proteomics profile showed that the 47 and 81
proteins of hUC-MSCs were affected by freeze—thawing
and a 24 h sub-culture at P4 and P10, respectively. In this
study, two time points (24 and 48 h) were chose in this
study because over-time culture can induce over-conflu-
ency of hUC-MSCs that is not conducive to evaluate the
status of cells, and hUC-MSC passage with fresh culture
medium contains serum can affect many proteins expres-
sion, which may not reflect the true status of cells after
thawing [28]. In P4, the different proteins were enriched
in microRNA in cancer, small cell lung cancer, hyper-
trophic cardiomyopathy and dilated cardiomyopathy
due to the proteins such as TIMP3 (Metalloproteinase
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inhibitor 3), ITGA6 (Integrin alpha-6) and TPMs (Tro-
pomyosins) were affected by culturing from 24 h to 48 h
(P4N24 vs. P4N48) and freeze—thawing for culturing
24 h (P4N24 vs. P4C24), and these gene were clustered
in pathway of those disease. TIMP3, ITGA6 and TPM
are involved in the extracellular matrix, cytoskeleton and
cell adhesion that directly related to the cellular regu-
lar function, and these genes change may be caused by
cryopreservation or cryoprotectant, and cryopreserva-
tion could affect surface adhesion molecules had been
reported [29]. It is indicated that TIMP3, ITGA6 and
TPM may be good markers to detecting impairment
of cell function which is still need to be further stud-
ied. Many studies have shown that extracellular matrix,
cytoskeleton and cell adhesion are connected with lung
cancer and cardiomyopathy. TIMP-3 inhibits the activity
of metalloproteinases that play important roles in devel-
opment and progression of lung tumors [30]. TIMP-3 is
up-expressed in cardiac fibroblasts and cardiomyocytes
but down-expressed in the failing heart [31]. Early stud-
ies have reported that ITGA6 is involved in the occur-
rence and development of lung cancer [32]. It is reported
that ITGA6 corresponds to the activation of regeneration
involving an epithelial-mesenchymal transition in adult
heart [33]. TPM is a potential marker in lung cancer
diagnosis [34], and the latest study showed TPM pseudo-
phosphorylation results in dilated cardiomyopathy [35].
However, the relationship between cryopreservation of
hUC-MSCs after long-term culture and diseases includ-
ing cancer and cardiomyopathy remains unknown and
need to be further studied.

The complement and coagulation cascades were alle-
viated by sub-culturing from 24 h to 48 h after freeze—
thawing compared with the non-cryopreserved group
with a sub-culture for 24 h or 48 h parallelly. Meanwhile,
the proteins of fat digestion and absorption, steroid
hormone biosynthesis, and hematopoietic cell lineage
pathways were affected (P4N24 vs. P4C24 and P4N48
vs. P4C48). In P10, many pathways including cytokine—
cytokine receptor interaction, hippo signaling pathway,
wnt signaling pathway, microRNA in cancer, small cell
lung cancer, NF-kappa B signaling pathway and others
were significantly alleviated by sub-culturing from 24 h
to 48 h after freeze-thawing (P10N24 vs. P10C24 and
P10N48 vs. P10C48). These results indicated that the
effect of cryopreservation on the protein expression of
MSCs at P10 was greater than those at P4. For example,
related proteins of complement and coagulation cascades
including CLU (Clustering), PLAU(Urokinase-type plas-
minogen activator), C3 (Complement C3) and F3(Tissue
factor) were not recovered until a sub-culture to 48 h at
P4, and related proteins of Th17 cell differentiation IL-1B
and SMAD3 were not recovered until a sub-culture to
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48 h at P10, it maybe that serum or nutritional compo-
nents for hUC-MSCs growth was less with consumption,
and this would cause interference in the expression of
a variety of proteins [28, 36]. These results suggest that
properly prolonging the time of continuous culture after
freeze-thawing can alleviate the effect of cryopreser-
vation on the change of proteins expression. In addi-
tion, rare studies have reported that cryopreservation
reduces the homing/engraftment potential of MSCs by
poor binding to the extracellular matrix such as fibronec-
tin and the immunosuppression ability of MSCs play an
important role in MSCs homing/engraftment. However,
the knowledge about the recovery status of the main
immunoregulation proteins of MSCs after cryopreserva-
tion and sub-culture is poor [27, 37].Therefore, it is nec-
essary to sub-culture and recover the functional proteins
of hUC-MSCs after cryopreservation and before trans-
plantation, and the optimal recovery methods for MSCs
are still need to be further explored.

The proliferation of MSCs is limited during long-term
culture and the MSCs exhibit a aberrant phenotype of
irregular flattened geometry and enlarged size [38]. Yang
et al. found human bone marrow-derived MSCs undergo
senescence during extensive passage and result in mor-
phological, phenotypic and genetic changes from P4 to
P8 [38]. De Witte et al. reported that long-term expan-
sion induced aging of hUC-MSCs exhibiting stable phe-
notype but reduced immunosuppressive properties from
P4 to P12 [39]. Facchin et al. reported that umbilical cord
Wharton’s Jelly-derived MSCs showed higher antioxidant
ability to senescence than human adipose tissue-derived
MSCs at high subculture passages, and they considered
that the age of tissue donors is likely to be the main cause
of senescence [40]. Moreover, recently, studies found
that transcriptome and epigenetic regulations changes
of hUC-MSCs occurred during long-term expansion [41,
42]. These studies not only indicated that long-term cul-
ture and expansion induces aging of hUC-MSCs as well
as genes expression changed, but also suggested that the
antioxidant ability of hUC-MSC is superior to others that
were derived from human adult such as bone marrow
and adipose tissue. In this present study, the morphol-
ogy, surface markers expression, tri-lineage differentia-
tion potency and proteomic analysis of hUC-MSCs were
evaluated after long-term culturing and expanding from
P4 to P10, and the results showed that the morphol-
ogy, surface markers and differentiation potency were
not affected but large scale of proteins were changed
from P4 to P10, which involve in proteins related to cell
cycle and P53 pathways including CCNB1(G2/mitotic-
specific  cyclin-B1), CCND1(G1/S-specific  cyclin-
D1), CHEK1 (Serine/threonine-protein kinase Chkl),
RRM2(Ribonucleoside-diphosphate reductase subunit
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M2), SERPINE1(Plasminogen activator inhibitor 1)
and P53 pathway has been reported to relate to aging
of MSCs in previous studies [6, 43, 44]. Superoxide dis-
mutase 2 (SOD2) has been reported to participate in the
aging of MSCs [45, 46]. In the present study, superoxide
dismutase 2 (SOD2) is up-regulated in MSCs at P10 com-
pare to those at P4, which indicated that oxidative stress
may be activated.

The identified differential proteins of hUC-MSCs cry-
opreserved and thawed at P4 and P10 were enriched in
the biological processes pathways of GO classification
including differentiation, immunoregulation, wound
healing and regeneration, apoptotic signaling pathway,
oxidation resistance, cartilage development, regulation
of cytokine production, cell migration, aging and others
as shown in Table 1, and some proteins were enriched
and appeared multiple times in various signaling path-
ways of hUC-MSCs biological processes including STC1
(Stanniocalcin-1), TNFAIP3 (Tumor necrosis factor
alpha-induced protein 3), SERPINE1l, COL1A1l (Col-
lagen alpha-1(I)), PDGFR (Platelet-derived growth fac-
tor receptor), NCAMI1 (Neural cell adhesion molecule
1), C3, JUN (Transcription factor AP-1), GATA6 (Tran-
scription factor GATA-6), HGF (Hepatocyte growth fac-
tor), F3 and other proteins likely be used as markers to
evaluate hUC-MSCs after cryopreserving and long-term
culturing. MSCs can secrete STC1 to protect cancer
cells from apoptosis by reducing reactive oxygen radi-
cal (ROS), it suggests that STC1 play an important role
in antioxidant activity of MSCs [47]. The deficiency of
TNFAIP3 in MSCs can induce immune thrombocytope-
nia and influence megakaryocytic differentiation through
terminating the NF-«xB pathway that suggests TNFAIP3
play a critical role in the process of MSCs alleviate s
autoimmune disease [48]. The mutation of COL1A1 and
COL1A2 in MSCs could cause osteogenesis imperfecta, it
likely that COL1A1 and COL1A?2 play an important role
in osteogenesis differentiation from MSCs [49]. PDGFR
signaling is emerging as a critical regulatory mechanism
and important therapeutic target that critically directs
the fate of mesenchymal stem cells during postnatal neo-
vascularization [50]. It is reported that JUN not only can
regulate human bone marrow MSCs differentiates into
neuron-like cells and acilitates neurite outgrowth, but
also play a key role in human MSCs aging and therapeu-
tic potency maintaining [51, 52]. C3 was secreted from
MSCs that has an important role in the immunomodu-
latory and liver regeneration [53, 54]. HGF may have an
important role in MSC recruitment sites of tissue regen-
eration, and may be beneficial in tissue engineering and
cell therapy employing hMSCs [55]. These proteins such
as STC1, TNFAIP3, SERPINE1, COL1Al, PDGEFR, C3,
JUN and HGF present important roles in maintaining
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MSCs function, and CHEK1, SERPINE1, PDGFRB and
JUN were also enriched in aging pathway of MSCs bio-
logical process. Therefore, these proteins may be used as
indicators for the detection of MSCs after cryopreserva-
tion and long-term culturing. However, whether these
proteins can be used as markers in clinical detection
remains to be further studied.

Conclusion

The morphology, surface markers and tri-lineage differ-
entiation potential of P4 and P10 hUC-MSCs were tested
after cryopreservation and a sub-culturing for 24 h and
48 h which was compared with non-cryopreservation
and sub-culturing 24 h and 48 h, and the results showed
no obvious differences among these groups. However, the
proteomics analysis found that cryopreservation leads to
changes in a large number of proteins expression com-
pared to those of the controls. This report is the first to
show the different effects of freeze-thaw and long-term
culture on the proteome of hUC-MSCs. These results
will be beneficial to understand the biological process
involved in the cryopreservation and long-term culture
of hUC-MSCs and contribute to improved cryopreser-
vation protocols that maintain proteomic identity for
clinical research, and promote scientists’ attention to
the recovery of main proteins and MSCs function after
cryopreservation. This will also provide a foundation for
safety detection and standardization guide of hUC-MSCs
applications in clinical.
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