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Abstract 

Background:  Metastasis of breast cancer to distal organs is fatal. However, few studies have identified biomarkers 
that are associated with distant metastatic breast cancer. Furthermore, the inability of current biomarkers, such as 
HER2, ER, and PR, to differentiate between distant and nondistant metastatic breast cancers accurately has necessi-
tated the development of novel biomarker candidates.

Methods:  An integrated proteomics approach that combined filter-aided sample preparation, tandem mass tag 
labeling (TMT), high pH fractionation, and high-resolution MS was applied to acquire in-depth proteomic data from 
FFPE distant metastatic breast cancer tissues. A bioinformatics analysis was performed with regard to gene ontology 
and signaling pathways using differentially expressed proteins (DEPs) to examine the molecular characteristics of dis-
tant metastatic breast cancer. In addition, real-time polymerase chain reaction (RT-PCR) and invasion/migration assays 
were performed to validate the differential regulation and function of our protein targets.

Results:  A total of 9441 and 8746 proteins were identified from the pooled and individual sample sets, respectively. 
Based on our criteria, TUBB2A was selected as a novel biomarker candidate. The metastatic activities of TUBB2A were 
subsequently validated. In our bioinformatics analysis using DEPs, we characterized the overall molecular features of 
distant metastasis and measured differences in the molecular functions of distant metastatic breast cancer between 
breast cancer subtypes.

Conclusions:  Our report is the first study to examine the distant metastatic breast cancer proteome using FFPE tis-
sues. The depth of our dataset allowed us to discover a novel biomarker candidate and a proteomic characteristics of 
distant metastatic breast cancer. Distinct molecular features of various breast cancer subtypes were also established. 
Our proteomic data constitute a valuable resource for research on distant metastatic breast cancer.

Keywords:  Distant metastatic breast cancer, Formalin-fixed paraffin-embedded (FFPE) tissue, Biomarkers, Tandem 
mass tag (TMT), Quantitative proteomics
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Background
Breast cancer is one of the most prevalent and lethal can-
cers in women worldwide [1]. In particular, its annual 
incidence—currently 17 million cases—is increasing at 
an alarming rate [2, 3]. There are approximately 232,000 
new cases of invasive breast cancer each year in the US, 
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and approximately 40,000 women die each year from 
the disease; furthermore, roughly 90% of these deaths 
are caused by the most malignant form of breast cancer: 
distant metastatic breast cancer [2, 4]. Distant metastatic 
breast cancer, which preferentially metastasizes to distal 
organs, such as the bone, liver, lung, and brain, has a poor 
prognosis [5, 6]. In addition, this type of breast cancer 
causes various complications at the affected sites, such 
as pericardial effusion, pleural effusion, bone fracture, 
hypercalcemia, and red blood cell anemia, which worsens 
survival outcomes [7–9].

Distant metastatic breast cancer is assessed, based on 
various factors, such as tumor size, lymphovascular inva-
sion, histological grade, nodal involvement, and hormone 
receptor status—all of which are independent risk fac-
tors for distant metastatic breast cancer [10–13]. Among 
these factors, breast cancer molecular subtypes are asso-
ciated with various patterns of distant metastatic spread 
and related to differences in survival outcomes [10, 14]. 
For instance, the most widely known molecular subtypes, 
such as the luminal A, luminal B, HER2, and basal-like 
(triple-negative) groups, have site-specific, cumulative 
metastatic incidence rates, demonstrating substantial dif-
ferences in the distant metastatic behavior of and overall 
survival between breast cancer subtypes [10].

Although various risks and molecular characteristics 
of distant metastatic breast cancer have been established, 
the prediction and diagnosis of distant metastasis in 
breast cancer with molecular biomarkers remain largely 
unexamined [4–6, 10–13]. Thus, characterizing the 
molecular signatures that are associated with distant 
metastasis using omics-based approaches, such as 
genomics, transcriptomics, and proteomics, might iden-
tify previously overlooked biomarker candidates.

Many genomic or transcriptomic studies have exam-
ined the molecular characteristics of distant meta-
static breast cancer—for instance, genes that are 
associated with lung, brain, and bone metastasis from 
breast tumor [15–18, 20, 21]. In addition, genetic sig-
natures that predict distant metastasis in breast cancer 
have been established through genomic profiling [19]. 
However, given the relatively low correlation between 
gene expression and protein expression, it is difficult to 
assume that the tendencies in genomic data will trans-
late fully to proteomic data without verification [22, 
23]. Similarly, considering that transcriptomic and pro-
teomic data have a moderate correlation, the molecular 
characteristics of the transcriptome could not perfectly 
represent those of the proteome [24–26]. In the case 
of breast cancer, recent large dataset-based proteomic 
approaches have reported an intermediate correla-
tion between the breast tumor proteome and the cor-
responding transcript levels [27, 28]. Furthermore, a 

recent report has described a low correlation between 
proteomes and transcriptomes in human breast cancer 
tissues, suggesting that a proteomic approach to human 
BC tissues could complement a transcriptomic method 
[29].

Although proteomic studies have been performed for 
various diseases, including breast cancer, none has inves-
tigated the overall characteristics of distant metastatic 
breast cancer [29–37, 44]. Proteomic research is expected 
to provide greater insight into the pathogenesis of distant 
metastatic breast cancer, generating novel information 
about the molecular features of distant metastasis—for 
example, by discovering novel protein biomarkers for the 
prediction or diagnosis of distant metastatic breast can-
cer. Thus, an in-depth proteomic analysis is important for 
yielding valuable resources in distant metastatic breast 
cancer—data that have not been found in genomic and 
transcriptomic analyses.

Recent advances in mass spectrometry (MS)-based 
proteomics have accelerated the development of high-
throughput techniques for proteomic quantification [38, 
39]. In addition, a tandem mass tag (TMT)-based strat-
egy has facilitated relative protein quantification by com-
paring the reporter ion intensities that are obtained by 
MS/MS. Because this approach can quantify thousands 
of proteins precisely with high sensitivity, TMT-based 
techniques have been used widely to generate substan-
tial datasets [40–43]. With a 6-plex TMT quantification 
technique, in combination with high-resolution MS, we 
constructed an in-depth proteomic map of distant meta-
static breast cancer.

In this study, we hypothesized that in-depth proteomic 
data would supply important proteins to profile the 
molecular signatures of distant metastatic breast cancer. 
Using our proteomic techniques, we identified by far the 
largest number of proteins from FFPE distant and non-
distant metastatic breast cancer tissues. Furthermore, we 
determined important protein targets to validate distant 
metastatic potential of breast cancer. The function of 
these targets was determined using several approaches, 
including RT-PCR and invasion/migration assays.

Through our criteria to narrow down the important 
proteins, we discovered a novel protein biomarker can-
didate differentially expressed in distant metastatic breast 
cancer. Furthermore, we examined the distinct biologi-
cal functions of distant metastatic breast cancer between 
molecular subtypes. In summary, we have proposed the 
first protein biomarker candidate that potentially be able 
to distinguish distant metastasis, derived from primary 
breast tumors using FFPE tissue samples. We performed 
the initial examination of its molecular features at the 
protein level, providing insights into the pathogenesis of 
distant metastatic breast cancer.
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Methods
Materials and reagents
Sodium dodecyl sulfate (SDS) and Trizma base were pur-
chased from USB (Cleveland, OH), and sequencing-grade 
modified trypsin was purchased from Promega Corpora-
tion (Madison, WI). Dithiothreitol (DTT) and urea were 
obtained from AMRESCO (Solon, OH). POROS20 R2 
beads were purchased from Applied Biosystems (Foster 
City, CA). High-purity (> 97%) mass spectrometry (MS)-
grade ovalbumin was obtained from Protea (Morgan-
town, WV), and HLB OASIS columns were purchased 
from Waters (Milford, MA). Tandem mass tag (TMT) 
6-plex isobaric reagents; a bicinchoninic acid (BCA) 
assay kit; LC/MS-grade solvents, such as acetone, ace-
tonitrile (ACN), and water; and reducing agents, such as 
tris (2-carboxyethyl) phosphine (TCEP), were purchased 
from Thermo Fisher Scientific (Waltham, MA). All other 
reagents, if not noted otherwise, were obtained from 
Sigma-Aldrich (St. Louis, MO).

Sample selection
All clinical samples were collected from the Department 
of Pathology, Seoul National University Hospital (Seoul, 
South Korea). The distant metastasis group (dis-meta) 
was defined as patients who developed distant metastasis 
with or without lymph node metastasis. The nondistant 
metastasis group (nondis-meta) comprised patients who 
were not diagnosed as having distant metastasis with 
or without lymph node metastasis. All clinical speci-
mens were collected from 18 patients with dis-meta and 
18 patients with nondis-meta. The 18 patients in each 
group were divided into 3 breast cancer molecular sub-
types (HER2, TNBC, and luminal). Tissue samples for 
distant and nondistant metastatic breast cancer were 
derived from the primary breast tumor. Clinical infor-
mation on the patient samples is detailed in Additional 
file  1: Table  S1. All patients consented to participate in 
the study per institutional review board guidelines (IRB 
No.1612-011-811).

Sample preparation of FFPE tissues for proteomic analysis
FFPE sections  (10  μm) were incubated twice in xylene 
(Sigma-Aldrich, St. Louis, MO)—once each for 5 and 
2 min—and then twice in 100% (v/v) ethanol for 90 s. The 
sections were then hydrated in 75% (v/v) ethanol for 90 s 
and distilled water for 90 s [33, 44]. Next, the tissues were 
scraped off the glass slides into microfuge tubes, after 
which protein extraction buffer (4% SDS; 0.3 M Tris, pH 
8.5; 2  mM TCEP) was added. Following sonication, the 
samples were incubated at 100 °C for 2.5 h. Protein con-
centrations were measured using a bicinchoninic acid 
(BCA) reducing agent-compatible kit (Thermo Fisher 
Scientific, Waltham, MA).

Protein digestion was performed using a combination 
of acetone precipitation and filter-aided sample prepara-
tion (FASP) [45, 46]. Before the digestion step, 250 μg of 
extracted protein was precipitated with cold acetone at a 
buffer: acetone ratio of 1:5 and incubated at – 20  °C for 
18 h. Next, the pellet was washed with 500 μl cold ace-
tone, centrifuged at 15,000 rpm for 15 min, and air-dried 
for 1.5  h. The proteins that had precipitated were dis-
solved in 35 μl denaturation buffer (4% SDS and 100 mM 
DTT in 0.3 M TEAB pH 8.5).

After being heated at 100 °C for 35 min, the denatured 
proteins were loaded onto 30 kDa spin filters (Merck Mil-
lipore, Darmstadt, Germany). The buffer was exchanged 
3 times with UREA solution (8 M UREA in 0.1 M TEAB, 
pH 8.5). After SDS was removed, cysteine residues were 
treated with alkylation buffer (50  mM IAA, 8  M UREA 
in 0.1 M TEAB, pH 8.5) for 1 h at room temperature in 
the dark. UREA buffer was exchanged with TEAB buffer 
(40 mM TEAB, pH 8.5). The proteins were digested with 
trypsin (enzyme-to-substrate ratio [w/w] of 1:50) and 4% 
ACN at 37 °C for 18 h. The digested peptides were eluted 
by centrifugation, and their concentrations were meas-
ured, based on the fluorescence emission of tryptophan 
at 350 nm, using an excitation wavelength of 295 nm [47]. 
The external standard sample, ovalbumin, was digested in 
the same manner.

6‑Plex tandem mass tag (TMT) labeling
Because the number of samples exceeded that of the 
TMT channels, 2 independent TMT 6-plex labeling 
experiments—using a pooled sample set and individual 
sample set—were performed. Each TMT experiment 
consisted of 18 samples that were divided into 2 groups 
(dis-meta and non dis-meta). For the pooled sample set, 
equal amounts of 3 samples with identical molecular sub-
types in each group were pooled, generating 6 pooled 
samples. Next, they were labeled with TMT 6-plex: 
126-non dis-meta (HER2), 127-non dis-meta (TNBC), 
128-non dis-meta (Luminal), 129-dis-meta (HER2), 
130-dis-meta (TNBC), and 131-dis-meta (Luminal). At 
this step, several technical replicates of the sample sets 
were prepared. For the individual sample set, 18 indi-
vidual patients were positioned in 3 TMT 6-plex sets: 
126-non dis-meta (HER2), 127-non dis-meta (TNBC), 
128-non dis-meta (Luminal), 129-dis-meta (HER2), 
130-dis-meta (TNBC), and 131-dis-meta (Luminal). The 
detailed experimental workflow is described in Addi-
tional file 2: Fig. S1.

Prior to the TMT labeling step, 45 μg of each peptide 
sample was mixed with an equivalent volume of ovalbu-
min. Then, 40 mM TEAB buffer was added to each sam-
ple to equalize the volume. Next, TMT reagents were 
reconstituted in 110 μl anhydrous ACN. Each sample was 



Page 4 of 19Shin et al. Clin Proteom           (2020) 17:16 

labeled using 25  μl of the reconstituted TMT reagent. 
Then, 45 μl ACN was added in varying volumes to a final 
concentration of 30% and incubated at room temperature 
(25  °C) for 1.25 h. Hydroxylamine was added in various 
volumes to a concentration of 0.3% (v/v) to quench the 
reaction. TMT-labeled samples for each set were pooled 
at a ratio of 1:1. The pooled sample was lyophilized and 
desalted.

Desalting and high‑pH reversed‑phase (HPRP) peptide 
fractionation
The TMT-labeled samples were desalted on an HLB 
OASIS column per the manufacturer’s instructions. 
High-pH reversed-phase (HPRP) peptide fractionation 
was performed on an Agilent 1260 bioinert HPLC instru-
ment (Agilent, Santa Clara, CA) with an Agilent 300 
Extended-C18 column (4.6  mm I.D × 15  cm long, 5-μm 
C18 particle). TMT-labeled peptide samples were pre-
fractionated at a flow rate of 1 mL/min for 60 min on a 
linear gradient, which ranged from 5% to 40% ACN with 
15 mM ammonium hydroxide. The sample was separated 
into 96 fractions, which were then assembled into 12 
fractions. The 12 fractions were lyophilized and stored at 
− 80 °C before MS analysis.

Sample preparation of breast cancer cells for proteomic 
analysis
MDA-MB-231 breast cancer cells were cultured in 
DMEM, and T47D cells were cultured in RPMI, contain-
ing 10% FBS and 1% penicillin and streptomycin. The 
cells were seeded in 75-cm2 culture plates. After a 24-h 
incubation at 37 °C with 5% CO2, the cells were scraped 
using a cell scraper and washed 3 times with 1 × PBS. The 
scraped cell pellets were centrifuged and washed again 
3 times with 1 x PBS. The pellets were then transferred 
to microfuge tubes and mixed with protein extraction 
buffer (4% SDS; 0.3 M Tris, pH 7.5; 2 mM TCEP). Follow-
ing sonication, the samples were incubated at 100 °C for 
30 min. After protein extraction, the subsequent experi-
mental procedures, such as protein digestion, TMT 
labeling, desalting, and peptide fractionation, were per-
formed in the same manner as the FFPE tissues.

Reversed‑phase (RP)‑nano LC–ESI–MS/MS analysis
The prefractionated peptides were analyzed on an LC–
MS system with an Easy-nLC 1000 (Thermo Fisher 
Scientific, Waltham, MA) that was equipped with a 
nanoelectrospray ion source (Thermo Fisher Scientific, 
Waltham, MA) and coupled to a Q-Exactive mass spec-
trometer (Thermo Fisher Scientific, Waltham, MA), as 
described in our previous studies [45, 46]. The peptide 
samples were separated on a 2-column system, com-
prising a trap column (Thermo Fisher Scientific, 75  μm 

I.D. x 2  cm long, 3-μm Acclaim PepMap100 C18 beads) 
and an analytical column (Thermo Fisher Scientific, 
75  μm I.D. x 50  cm long, 3-μm ReproSil-Pur C18-AQ 
beads). Lyophilized peptide samples were dissolved in 
Solvent A (0.1% formic acid water and 2% ACN) prior to 
injection.

The peptides were separated on a 180-min linear gra-
dient, ranging from 6 to 26% Solvent B (100% ACN and 
0.1% formic acid) for all peptide samples. The spray volt-
age was set to 2.2 kV in positive ion mode, and the heated 
capillary temperature was set to 320  °C. Mass spectra 
were collected in data-dependent acquisition (DDA) 
mode by top 20 method. Xcaliber (version 2.5) was used 
to set the mass spectrometer parameters as follows: mass 
range to 350–1650 m/z, resolution of 70,000 at 200 m/z 
for detected precursor ions, automatic gain control 
(AGC) at 3 x 106, isolation window for MS2 at 1.2  m/z, 
automatic gain control (AGC) for MS2 at 2 x 105, higher-
energy collisional dissociation (HCD) scans at a resolu-
tion of 35,000, and normalized collision energy (NCE) 
of 32. The maximum ion injection time (maximum IT) 
for the full-MS and MS2 scans was 30  ms and 120  ms, 
respectively. Dynamic exclusion with an exclusion time 
of 40 s was used.

MS data search
Proteome Discoverer, version 2.2 (Thermo Fisher Sci-
entific, Waltham, MA) was used to search the resulting 
RAW files. The full-MS and MS/MS spectra search was 
conducted using the SEQUEST HT algorithm against a 
modified version of the Uniprot human database (Decem-
ber 2014, 88,717 protein entries; http://www.unipr​
ot.org), which included chicken ovalbumin. The database 
search was performed using the target-decoy strategy. 
The search parameters were as follows: a precursor ion 
mass tolerance value of 20  ppm (monoisotopic mass); a 
fragment ion mass tolerance value of 0.02 Da (monoiso-
topic mass); full enzyme digest with trypsin (after KR/−) 
and up to 2 missed cleavages; static modification values 
of 229.163 Da for lysine residues and peptide N-termini 
for TMT labeling and 57.02 Da for cysteine residues with 
carbamidomethylation; and dynamic modification values 
of 42.01 Da for protein N-terminal acetylation, 0.984 Da 
for asparagine deamidation, and 15.99 Da for methionine 
oxidation.

A false discovery rate (FDR) of less than 1% at the 
peptide and protein levels was used as the confi-
dence criteria. Proteins were quantified by computing 
reporter ion relative intensities with the “Reporter Ions 
Quantifier” node in Proteome Discoverer. The co-isola-
tion threshold value was 70%. The mass spectrometry-
based proteome data lists of all identified proteins and 
peptides have been deposited into ProteomeXchange 

http://www.uniprot.org
http://www.uniprot.org
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(http://prote ​omece​ntral ​.prote ​omexc​hange​.org) 
through the PRIDE partner repository: dataset identi-
fier PXD016061 [48, 69–71].

Quantification of protein abundance and statistical 
analysis
Protein levels were normalized, based on the ovalbu-
min content in each TMT channel. Fold-change values 
were calculated by dividing the average value of the 
normalized protein abundance in the dis-meta group 
by that of the non dis-meta group. Statistical analysis 
for the proteomic data was performed for the normal-
ized protein levels using Perseus (version 1.5.8.5). Stu-
dent’s t-test was used to identify differentially expressed 
proteins (DEPs) for selecting biomarker candidates that 
differentiate distant metastasis from nondistant metas-
tasis of breast cancer. The statistical cutoff for the stu-
dent’s t-test was a p-value < 0.05. In addition, ANOVA 
was used to determine DEPs for analyzing the molec-
ular characteristics of distant metastatic breast can-
cer between molecular subtypes using bioinformatic 
tools. Specifically, 9 samples in each group were clas-
sified as HER2, TNBC, and luminal, resulting in 6 sub-
type groups (HER2 nondis-meta, TNBC nondis-meta, 
luminal nondis-meta, HER2 dis-meta, TNBC dis-meta, 
and luminal dis-meta). Next, the quantified proteins in 
these groups were analyzed to detect statistically sig-
nificant proteins. The statistical cutoff for the ANOVA 
was p-value < 0.05. Receiver operating characteristic 
(ROC) analyses of biomarker performance were per-
formed using MedCalc (version 12.5.0) and Prism (ver-
sion 6.0).

Bioinformatics analysis
The Gene Ontology (GO) of the proteins was classified 
using the DAVID bioinformatics tool (version 6.8). GO 
classification was assessed by Fisher’s exact test to obtain 
a series of p-values that were filtered, based on a statis-
tical significance of 0.05. Canonical pathways and down-
stream biological functions were enriched by Ingenuity 
Pathway Analysis (IPA, QIAGEN, Redwood City, CA). 
The analytical algorithms in IPA were used to predict the 
downstream effects on known biological pathways and 
functions, based on the inputted list of DEPs. IPA allo-
cates activation scores on activated or inhibited status to 
biological functions and pathways that underlie the quan-
titative values of proteins. Fisher’s exact test was used to 
acquire p-values, whereas the degree of activation was 
measured using Z-scores. The p-value cutoff was set to 
0.05, and the predictive activation Z-score cutoff was set 
to a magnitude of 1.

RNA extraction and real‑time polymerase chain reaction 
(RT‑PCR)
Total RNA was isolated from the following breast can-
cer cell lines using TRIzol (Invitrogen, Carlsbad, CA, 
USA) per the manufacturer’s instructions: MCF10A, 
MCF7, T47D, BT474, skBR3, MDA-MB-453, BT-20, 
MDA-MB-468, HCC70, HCC38, MDA-MB-157, MDA-
MB-436, MDA-MB-231, and HS578T. Two micrograms 
of total RNA from each cell line was used for the reverse-
transcription reaction. First-strand cDNA was synthe-
sized by standard random priming with RNA inhibitor 
(Promega, Madison, WI) and Moleney murine leukemia 
virus reverse transcripts (Promega, Madison, WI). Fol-
lowing cDNA synthesis, target genes were amplified 
using specific primers and HIPI plus Master mix (Elpis-
Bio, Daejeon, Korea).

Cell lines and culture conditions for invasion and migration 
assays
The MDA-MB-231 and Hs578T cell lines were obtained 
from American Type Culture Collection (ATCC; Manas-
sas, VA, USA) and the Korean Cell Line Bank (KCLB, 
Seoul, Korea), respectively. The cells were cultured in 
DMEM (Gibco, CA, USA), containing 10% fetal bovine 
serum (FBS; Invitrogen, Carlsbad, CA, USA) and 1% 
penicillin/streptomycin (Gibco, CA, USA). The cells 
were maintained at 37 °C in a humidified atmosphere of 
95% air and 5% CO2 and screened periodically for myco-
plasma contamination. Both cell lines were confirmed 
by DNA profiling of short tandem repeats (STRs) by the 
KCLB (Seoul, Korea).

Small interfering RNA (siRNA) transfection
siRNAs that targeted LTF and TUBB2A and AccuTarget 
Negative Control siRNA were purchased from Bioneer 
(Daejeon, Korea). The siRNA sequences for LTF and 
TUBB2A were as follows: siLTF-1, 5′-GAG​AUC​AGA​
CAC​UAC​CUU​-3′; siLTF-2, 5′-CAC​ACU​GUU​GAU​GUA​
AUG​A-3′; siTUBB2A-1,′-CUC​AAG​CAU​GGU​CUU​UCA​
-3′; siTUBB2A-2, 5′-CAC​ACU​GUU​GAU​GUA​AUG​A-3′. 
Cells were transfected using Lipofectamine RNAiMAX 
(Invitrogen, Carlsbad, CA, USA) per the manufacturer’s 
instructions. After a 48-h incubation, silencing of LTF 
and TUBB2A was confirmed by measuring their respec-
tive mRNA levels.

Cell migration and invasion assays
Quantitative cell migration and invasion were assessed 
using 24-well inserts (Corning Incorporated, NY, USA) 
with 8-μm pores according to the manufacturer’s instruc-
tions. In brief, for the transwell migration assay, trans-
fected cells (5 × 104 cells) were seeded into the upper 

http://proteomecentral.proteomexchange.org
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chamber, and medium that contained 10% FBS was added 
to the lower chamber. After a 24-h incubation, the cells 
on the top of the membrane were removed using a cot-
ton swab. The remaining migrant cells were washed with 
PBS, fixed in 4% paraformaldehyde, stained with 1% crys-
tal violet for 10 min, and imaged and counted in 3 ran-
domly selected fields under a microscope (Nikon, Tokyo, 
Japan). These experiments were performed in triplicate.

For the in  vitro invasion assay, the upper wells of 
Boyden chambers were coated with 2 mg/ml of Matrigel 
(Corning Incorporated, NY, USA) at 37  °C in a 5% CO2 

incubator for 2  h. The cells (1 × 105 cells) were seeded 
into the upper chamber, and medium that contained 
10% FBS was added to the lower chamber. The rest of the 
assay was performed as described above.

Results
Construction of distant metastatic breast cancer proteomic 
datasets
In the pooled sample set, 9441 proteins were identified, 
and 7179 proteins were quantified across all samples. In 
the individual sample set, 8746 proteins were identified, 

Fig. 1  Schematic of overall proteomic results of the TMT-based proteomic analysis. Number of identified proteins; pooled sample set: 9441, 
individual sample set: 8746, and cell line set: 7823. Number of DEPs by statistical analysis and the steps for selection of protein targets. Validation 
phase of protein targets; real-time polymerase chain reaction (RT-PCR) and migration/invasion assay
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and 6642 proteins were quantified in all samples (Fig. 1, 
Additional file  2: Fig. S2a). In addition, the number of 
identifications in each sample was calculated, resulting in 
a range from 7515 to 7798 identified proteins in the indi-
vidual sample set and 8287 to 8309 proteins in the pooled 
sample set. Overall, the numbers of proteins in the sam-
ples of each sample set were similar (Additional file  2: 
Fig. S2b–c).

Our proteomic platform enabled us to perform an in-
depth analysis of the distant metastatic breast cancer 
proteome, as evidenced by a dynamic range that spanned 
over 6 orders of magnitude (Additional file  2: Fig. S3). 
This comprehensive dataset included many established 
biomarkers for breast cancer, including the receptor 
tyrosine kinase erbB-2 (HER2), estrogen receptor (ESR1), 
progesterone receptor (PGR), and androgen receptor 
(AR). Notably, established protein biomarkers for meta-
static breast cancer, such as EGFR, HSPD1, PRDX6, and 
TPM4, which are related to lymph node and regional 
metastasis, were also detected [50]. Moreover, this pro-
teome encompassed most of the identified proteins in 
our previous study and included an additional 3757 and 
3126 newly identified proteins in the pooled and indi-
vidual sample sets, respectively (Additional file  2: Fig. 
S4) [44]. Consequently, our in-depth proteomic profil-
ing generated a comprehensive dataset that is suitable for 
biomarker discovery and analysis with regard to deter-
mining the underlying mechanisms of distant metastasis 
in breast cancer. All identified proteins of each sample set 
are listed in Additional file 3: Table S2.

Quality assessment of proteomic data
The multiplexing feature of the TMT-based strategy 
allowed us to examine the quantitative variation within 
and between our samples. Interbatch and intrabatch vari-
ation was assessed using an internal standard, ovalbumin. 
As a result, the interbatch and intrabatch normalization 
produced coefficients of variation of 4.17% and 6.7% 
in the pooled and individual sample sets, respectively 
(Additional file  2: Fig. S5a). Although the variation in 
non-normalized intensities reflected excellent repro-
ducibility, a slight improvement in reproducibility was 
observed when the levels of proteins were normalized to 
ovalbumin (Additional file 2: Fig. S5b–c).

Next, correlation values were calculated to assess the 
variation between technical replicates in the pooled sam-
ple set. MS analysis of the pooled sample set showed 
excellent correlation, with Pearson’s correlation val-
ues ranging from 0.993 to 0.994 and averaging 0.993 
(Additional file  2: Fig. S5d). In addition, the correlation 
between the quantitative levels of all samples was calcu-
lated to assess the variation across individual samples. 
MS analysis of the individual sample set revealed a wider 

range of correlation values than that of the pooled sample 
set, with Pearson’s correlation values ranging from 0.647 
to 0.988 and averaging 0.927 (Additional file 2: Fig. S5e). 
One sample, a HER2 type in the non dis-meta group, had 
low correlation values when paired with other individual 
samples, resulting in a range of 0.647 to 0.778. Slight dif-
ferences in protein abundance between individual sam-
ples were observed.

Determination of protein targets to validate distant 
metastatic potential
To select important protein targets to verify distant 
metastatic potential of breast cancer, the quantified pro-
teins in the BC FFPE tissues datasets (i.e., the pooled and 
individual sample sets) were examined separately by sta-
tistical analysis. For the proteomic datasets of BC FFPE 
tissues, student’s t-test was performed to determine dif-
ferentially expressed proteins (DEPs) between the non-
distant metastasis and distant metastasis groups. When 
a Benjamini–Hochberg false discovery rate (BH-FDR) 
cutoff of 0.05 was applied to the proteins in the pooled 
and individual sample sets respectively, however, none 
of the proteins in nondis-meta and dis-meta was signifi-
cantly differentially expressed. Nonetheless, to determine 
protein targets for validation of distant metastatic breast 
cancer, alternative criteria were applied to the datasets.

The criteria were as follows: 1. The quantified proteins 
in our BC FFPE tissue proteomic datasets must pass a 
p-value (unadjusted for multiple comparison) cutoff of 
0.05 by student’s t-test for determining DEPs in nondis-
meta versus dis-meta. 2. Overlapping DEPs in both BC 
FFPE tissue datasets were selected. 3. Overlapping DEPs 
that were also identified in the BC cell line proteomic 
dataset and demonstrated a consistent expression pattern 
in all 3 datasets were selected. 4. Overlapping DEPs that 
passed a fold-change cutoff of 1.2 were selected. 5. The 
most highly up-regulated and down-regulated DEPs were 
selected. Therefore, DEPs that satisfied all of the require-
ments were selected as protein targets for validation of 
distant metastatic potential (Fig. 1).

Specifically, a total of 180 and 96 proteins were initially 
selected as DEPs by student’s t-test (p-value < 0.05) in the 
pooled and individual sample sets, respectively (Fig.  1, 
Additional file 4: Table S3). Next, overlapping proteins in 
DEPs of each sample set were selected.

As a result, 17 overlapping DEPs in both sets were 
selected. The results of the statistical analysis for these 
proteins are listed in Table  1. Of the 17 proteins, 5 
(HSPA9, PSMB4, CTNNA1, XPO5, and PAFAH1B3) 
functioned in the growth, proliferation, metastasis, and 
recurrence of cancer [51–56]. Specifically, HSPA9 was 
associated with metastasis of hepatocellular carcinoma 
(HCC), and overexpression of HSPA9 increased the 



Page 8 of 19Shin et al. Clin Proteom           (2020) 17:16 

Ta
bl

e 
1 

D
et

ai
le

d 
st

at
is

ti
ca

l a
na

ly
si

s 
of

 1
7 

ov
er

la
pp

in
g 

pr
ot

ei
ns

Pr
ot

ei
n 

na
m

e
D

is
-m

et
a 

vs
 n

on
 d

is
-m

et
a 

in
 p

oo
le

d 
sa

m
pl

e 
se

t
D

is
-m

et
a 

vs
 n

on
 d

is
-m

et
a 

in
 in

di
vi

du
al

 s
am

pl
e 

se
t

H
ig

h 
in

va
si

ve
 v

s 
lo

w
 in

va
si

ve
 in

 c
el

l l
in

es
 s

et
Co

ns
is

te
nc

y 
of

 p
ro

te
in

 
ex

pr
es

si
on

Fo
ld

-
ch

an
ge

 >
 1

.2

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

G
ly

ce
ra

l-
de

hy
de

-
3-

ph
os

-
ph

at
e 

de
hy

dr
o-

ge
na

se

+
0.

01
30

8
1

1.
21

1
+

0.
03

68
1

1
1.

26
0

+
0.

01
58

0
0.

02
24

2
0.

81
5

N
N

Tu
bu

lin
 

be
ta

-2
A

 
ch

ai
n

+
0.

01
73

0
1

1.
21

9
+

0.
01

98
0

1
1.

29
8

+
0.

00
07

6
0.

00
17

3
2.

32
9

Y
Y

La
ct

ot
ra

ns
-

fe
rr

in
+

0.
00

00
0

9.
26

9E
 −

 0
9

0.
58

1
+

0.
02

61
9

1
0.

54
6

+
0.

00
52

9
0.

00
86

6
0.

55
1

Y
Y

St
re

ss
-7

0 
pr

ot
ei

n,
 

m
ito

-
ch

on
dr

ia
l

+
0.

00
25

1
0.

85
69

6
1.

11
4

+
0.

04
26

4
1

1.
16

0
+

0.
00

00
3

0.
00

01
9

0.
74

2
N

N

Ca
te

ni
n 

al
ph

a-
1

+
0.

04
02

7
1

1.
13

7
+

0.
03

01
7

1
1.

18
9

+
0.

00
00

0
0.

00
00

3
0.

47
3

N
N

Bi
fu

nc
-

tio
na

l 
pu

rin
e 

bi
os

yn
-

th
es

is
 

pr
ot

ei
n 

PU
RH

+
0.

03
37

1
1

1.
15

0
+

0.
03

07
8

1
1.

18
0

+
0.

00
04

7
0.

00
11

9
0.

71
0

N
N

H
et

er
og

e-
ne

ou
s 

nu
cl

ea
r 

rib
on

u-
cl

eo
pr

o-
te

in
 H

+
0.

04
52

9
1

1.
04

6
+

0.
02

77
9

1
1.

11
1

N
/D

N
/D

N
/D

N
/D

N
/D

N

Is
of

or
m

 2
 

of
 M

ul
-

tif
un

c-
tio

na
l 

pr
ot

ei
n 

A
D

E2

+
0.

01
65

7
1

1.
14

9
+

0.
02

41
2

1
1.

14
7

+
0.

00
18

4
0.

00
35

5
0.

74
2

N
N



Page 9 of 19Shin et al. Clin Proteom           (2020) 17:16 	

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Pr
ot

ei
n 

na
m

e
D

is
-m

et
a 

vs
 n

on
 d

is
-m

et
a 

in
 p

oo
le

d 
sa

m
pl

e 
se

t
D

is
-m

et
a 

vs
 n

on
 d

is
-m

et
a 

in
 in

di
vi

du
al

 s
am

pl
e 

se
t

H
ig

h 
in

va
si

ve
 v

s 
lo

w
 in

va
si

ve
 in

 c
el

l l
in

es
 s

et
Co

ns
is

te
nc

y 
of

 p
ro

te
in

 
ex

pr
es

si
on

Fo
ld

-
ch

an
ge

 >
 1

.2

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

A
D

P/
AT

P 
tr

an
sl

o-
ca

se
 3

+
0.

01
06

2
1

0.
82

7
+

0.
04

71
8

1
0.

83
3

+
0.

00
02

2
0.

00
06

8
1.

41
6

N
N

Ex
po

rt
in

-5
+

0.
00

72
0

1
1.

17
7

+
0.

03
87

1
1

1.
22

7
+

0.
00

35
9

0.
00

61
9

0.
86

8
N

N

RN
A

-
bi

nd
in

g 
pr

ot
ei

n 
39

+
0.

04
23

7
1

1.
07

4
+

0.
02

43
5

1
1.

11
9

+
0.

00
17

1
0.

00
33

4
0.

91
6

N
N

A
cy

l-C
oe

n-
zy

m
e 

A
 

de
hy

dr
o-

ge
na

se
, 

C
-4

 to
 

C
-1

2 
st

ra
ig

ht
 

ch
ai

n,
 

is
of

or
m

 
C

RA
_a

+
0.

04
31

9
1

0.
92

2
+

0.
01

63
6

1
0.

83
4

+
0.

00
04

9
0.

00
12

4
0.

88
9

Y
N

Pr
ot

ea
-

so
m

e 
su

bu
ni

t 
be

ta
 

ty
pe

-4

+
0.

00
13

6
0.

60
95

8
1.

11
1

+
0.

03
59

2
1

1.
14

3
+

0.
00

06
6

0.
00

15
5

1.
21

3
Y

N

Be
ta

-
gl

uc
ur

o-
ni

da
se

+
0.

00
26

6
0.

83
12

8
0.

64
3

+
0.

02
98

6
1

0.
63

0
N

/D
N

/D
N

/D
N

/D
N

/D
N

M
ito

tic
 

ch
ec

k-
po

in
t 

pr
ot

ei
n 

BU
B3

+
0.

00
72

8
1

1.
11

3
+

0.
04

70
2

1
1.

11
2

+
0.

03
50

3
0.

04
59

2
1.

05
7

Y
N



Page 10 of 19Shin et al. Clin Proteom           (2020) 17:16 

(N
/D

-n
ot

 d
et

ec
tio

n,
 N

-n
o,

 Y
-y

es
)

Ta
bl

e 
1 

(c
on

ti
nu

ed
)

Pr
ot

ei
n 

na
m

e
D

is
-m

et
a 

vs
 n

on
 d

is
-m

et
a 

in
 p

oo
le

d 
sa

m
pl

e 
se

t
D

is
-m

et
a 

vs
 n

on
 d

is
-m

et
a 

in
 in

di
vi

du
al

 s
am

pl
e 

se
t

H
ig

h 
in

va
si

ve
 v

s 
lo

w
 in

va
si

ve
 in

 c
el

l l
in

es
 s

et
Co

ns
is

te
nc

y 
of

 p
ro

te
in

 
ex

pr
es

si
on

Fo
ld

-
ch

an
ge

 >
 1

.2

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

t T
es

t 
si

gn
ifi

ca
nc

e
p 

Va
lu

e
A

dj
us

te
d 
p 

va
lu

e 
(B

H
 

FD
R 

< 
0.

05
)

Fo
ld

-
ch

an
ge

Pl
at

el
et

-
ac

ti-
va

tin
g 

fa
ct

or
 

ac
et

yl
-

hy
dr

o-
la

se
 IB

 
su

bu
ni

t 
ga

m
m

a

+
0.

04
16

1
1

1.
22

1
+

0.
02

11
7

1
1.

26
6

+
0.

01
90

3
0.

02
64

9
0.

85
0

N
N

2-
hy

dr
ox

y-
ac

yl
-C

oA
 

ly
as

e 
1

+
0.

01
33

7
1

1.
25

8
+

0.
04

67
7

1
1.

31
4

+
0.

00
00

1
0.

00
01

0
0.

57
5

N
N



Page 11 of 19Shin et al. Clin Proteom           (2020) 17:16 	

malignancy and aggressive behavior of HCC [51, 52]. 
Overexpression of PSMB4 increases cellular growth and 
the viability of breast cancer and ovarian cancer, leading 
to a poor prognosis [53, 54]. The deletion of CTNNA1 
effects the loss of cell-to-cell adhesion, enhancing the 
growth and mobility of breast cancer cells [55]. XPO5 
exports pre-miRNAs through the nuclear membrane 
to the cytoplasm and is thus important in breast can-
cer tumorigenesis [56]. PAFAH1B3 is a critical driver of 
the pathogenicity of breast cancer by inhibiting tumor-
suppressing signaling lipids [72]. These 5 proteins were 
upregulated in our distant metastasis group, which we 
propose stimulate the distant metastatic potential of 
breast cancer.

Subsequently, we examined whether the overlap-
ping 17 proteins were also differentially expressed in 
the proteomic dataset of BC cell lines, comparing less-
invasive T47D and highly invasive MDA-MB-231 cells. 
This examination was performed to identify proteins 
that might have molecular features that are related to 
the distant metastasis of breast cancer by comparing the 
BC FFPE and BC cell line proteomes. Five proteins had 
consistent expression patterns between all proteomic 
datasets: tubulin beta-2A chain (TUBB2A); lactotransfer-
rin (LTF); acyl-coenzyme a dehydrogenase, C-4 to C-12 
straight chain, isoform CRA_a (ACADM); proteasome 
subunit beta type-4 (PSMB4); and mitotic checkpoint 
protein BUB3 (BUB3) (Table  1). Next, with regard to 
the five proteins, the fold-change in expression between 
nondistant metastatic and distant metastatic groups 
was calculated. When the fold-change cutoff was set to 
1.2, two proteins were selected: LTF was the most exten-
sively downregulated protein, whereas TUBB2A was the 
most highly upregulated (Fig.  1, Table  1). The normal-
ized abundance of LTF and TUBB2A distinguished the 2 
sample groups significantly (Fig. 2a). Based on the crite-
ria, LTF and TUBB2A were selected as important protein 
targets for validation of their function in relation to dis-
tant metastasis of breast cancer.

Expression levels of TUBB2A and LTF verified by RT‑PCR
The difference in the expression of TUBB2A and LTF was 
validated by RT-PCR in 1 normal breast cell line and 13 
breast cancer cell lines, the relative invasiveness of which 
was determined per other studies [74–81]. The expres-
sion of LTF was lower in the higher invasive group than 
in the lower invasive group, except in 3 cell lines (BT20, 
MDA-MB-368, and HCC70). In particular, HCC70 
expressed the most LTF (Fig. 2b). The level of TUBB2A 
was generally higher in the higher invasive group com-
pared with the lower invasive group. Specifically, MDA-
MB-231 had the highest expression of TUBB2A (Fig. 2b). 
The expression level of TUBB2A by MS was consistent 

with that by RT-PCR. The patterns of LTF by MS were 
not consistent with the RT-PCR results.

Distant metastatic potential of TUBB2A
The correlation between TUBB2A and metastatic char-
acteristics was validated by invasion and migration assay. 
Two highly invasive BC cell lines (Hs578T and MDA-
MB-231) were used to examine invasion and migration, 
based on the levels of TUBB2A. As a result, by siRNA 
transfection, TUBB2A was downregulated in both cell 
lines by RT-PCR. The number of invading cells fell sig-
nificantly by over 50% when TUBB2A was knocked down 
compared with the control group (siControl), as did the 
number of migrating cells (Fig. 2c). Conversely, because 
the relative cell proliferation did not differ significantly 
on the day when the invasion and migration assays were 
conducted (Additional file 2: Fig. S6), the decreased inva-
siveness of the cells did not result from the altered cell 
proliferation. Thus, the distant metastatic potential of 
TUBB2A was verified, independent of the influence of 
cell proliferation.

To determine the ability of TUBB2A as a novel protein 
biomarker candidate of distant metastatic breast cancer, 
its performance was evaluated in the individual sample 
set. The sensitivity, specificity, and positive predictive 
value (PPV) by receiver operating characteristic (ROC) 
analysis were 78%, 100%, and 88%, respectively. Further-
more, the area under curve (AUC) value was 0.852, based 
on the ROC curve, and the threshold value, expressed 
as reporter ion intensity, that corresponded to the high-
est Youden’s index was 13,178 (Additional file 2: Fig. S7). 
Based on these results, we expected TUBB2A to perform 
well in the diagnosis and prediction of distant metastatic 
breast cancer.

Biological functions of distant metastatic breast cancer
To examine the functional signatures of distant meta-
static breast cancer, we performed a bioinformatics 
analysis using 259 DEPs from the 2 sample sets. By gene 
ontology (GO) enrichment analysis, the 177 upregulated 
proteins in the distant metastasis group were assigned 
to various biological processes, such as cell–cell adhe-
sion, proteolysis during cellular protein catabolism, NIK/
NK-kappa B signaling, microtubule-based processes, 
and retrograde vesicle-mediated transport,- Golgi-to-ER 
(Fisher’s exact test p-value < 0.05) (Additional file  2: Fig. 
S8a, Additional file 5: Table S4). The most significant bio-
logical process in upregulated proteins was the regula-
tion of mRNA stability (p-value = 7.82E−07). Conversely, 
the 82 downregulated proteins were allocated to vari-
ous biological processes, including oxidation–reduction, 
organization of actin cytoskeleton, response to hydro-
gen peroxide, thrombin receptor signaling, sequestering 
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of actin monomers, and positive regulation of toll-like 
receptor 4 signaling (Fisher’s exact test p-value < 0.05) 
(Additional file  2: Fig. S8b, Additional file  5: Table  S4). 
The most significant biological process in downregulated 
proteins was oxidation–reduction (p-value = 2.89E–04).

In the enrichment of biological functions and path-
ways, the 259 DEPs were assigned to 6 canonical path-
ways and 11 downstream biological functions (Fisher’s 
exact test p-value < 0.05, and Z-score > 1). Canonical 
pathways included acute phase response signaling, ILK 
signaling, actin cytoskeletal signaling, leukocyte extrava-
sation signaling, and tRNA charging (Additional file  2: 
Fig. S9a, Additional file  6: Table  S5). The most signifi-
cant and activated canonical pathway was glycolysis I 
(p-value = 1.74E−06, and activation Z-score = 2.236). 
Biological functions included polarization of tumor 
cell lines, orientation of cells, adhesion of BC cell lines, 

binding of NFkB sites, glycolysis in tumor cell lines, and 
proliferation of tumor/carcinoma cell lines (Additional 
file 2: Fig. S9b, Additional file 6: Table S5). The most sig-
nificant and activated biological function was cell pro-
liferation of tumor cell lines (p-value = 1.69E−08, and 
activation Z-score = 2.451). Based on our results, we pro-
pose that the interaction of various biological functions 
induces distant metastatic breast cancer.

Of the 2 protein targets, the result showed that the 
TUBB2A has association with the proliferation of tumor/
carcinoma cell lines, microtubule-based processes, epi-
thelial adherens junction signaling, 14-3-3-mediated 
signaling, and phagosome maturation. The most signifi-
cant function of TUBB2A was cell proliferation of tumor 
cell lines (p-value = 1.69E−08). LTF was involved in 
the binding of NFkB sites, negative regulation of apop-
totic process, positive regulation of I-KappaB kinase/

Fig. 2  Validation of TUBB2A and LTF as protein targets. a Protein expression patterns of TUBB2A and LTF by mass spectrometry; expression pattern 
of reporter ion intensity of TUBB2A (upper panel) and LTF (lower panel) in pooled sample set (left panel) and individual sample set (right panel), 
respectively. The data in the interquartile range are displayed as black dots (* < p-value 0.05; **** < p-value 0.0001).b Expression patterns of TUBB2A 
and LTF in various breast cancer cell lines by RT PCR. Higher expression levels are lighter than lower levels (red line; higher invasive BC cell lines, 
blue line; lower invasive BC cell lines). c Results of invasion and migration assays for TUBB2A using Hs578T and MDA-MB-231 BC cell lines. RT-PCR 
of TUBB2A, downregulated by siRNA transfection in both cell lines (upper panel). Images of invading and migrating cells (lower left panel) and 
percentage (%) of invading and migrating cells (lower right panel) (*** < p-value 0.001)



Page 13 of 19Shin et al. Clin Proteom           (2020) 17:16 	

NF-kappaB signaling, negative regulation of ATPase 
activity, and positive regulation of toll-like receptor 4 
signaling pathway. Binding of NFkB sites was the most 
significant function (p-value = 2.17E−04) (Additional 
file  2: Fig. S10, Additional file  7: Table  S6). Thus, these 
candidates had distinct and independent biological 
characteristics.

Proteomic alterations in distant metastatic breast cancer 
between molecular subtypes
According to the results of a previous study, pooling bio-
logical groups can reduce the variation that originates 
from the sample while retaining the defining features of 
the group itself [57]. We expected our pooled samples for 
each molecular subtype to reveal distinct information on 
the molecular characteristics between the HER2, TNBC, 
and luminal groups. For these reasons, a pooled sample 
set was used to identify the changes in proteins between 
distinct breast cancer molecular subtypes in the distant 
metastasis and nondistant metastasis groups.

By ANOVA, 1086 proteins were differentially 
expressed between breast cancer molecular subtypes 
(p-value < 0.05) (Fig. 3a, Additional file 8: Table S7). These 
DEPs were then analyzed by hierarchical clustering to 
determine their expression patterns between breast can-
cer molecular subtypes, resulting in 6 groups: upregu-
lated proteins in HER2-non-distant metastasis (cluster 1; 
176 DEPs), upregulated proteins in HER2-distant metas-
tasis (cluster 2; 124 DEPs), upregulated proteins in 
TNBC-non-distant metastasis (cluster 3; 193 DEPs), 
upregulated proteins in TNBC-distant metastasis (cluster 
4; 342 DEPs), upregulated proteins in luminal-non-dis-
tant metastasis (cluster 5; 29 DEPs), and upregulated pro-
teins in luminal-distant metastasis (cluster 6; 184 DEPs).

Biological functions of distant metastatic breast cancer 
between molecular subtypes
To gain greater insight into the molecular features of 
distant metastatic breast cancer between molecular 
subtypes, pathway enrichment analysis was conducted 
for clusters 2, 4, and 6, which comprised proteins that 
were upregulated in the distant metastasis group of each 
molecular subtype. By Ingenuity Pathway Analysis (IPA), 
2 canonical pathways were derived for cluster 2, ver-
sus 14 for cluster 4 and 11 for cluster 6 (p-value < 0.05, 
Z-score > 1) (Fig.  3b–d, Additional file  9: Table  S8). 

Specifically, in cluster 2, only PI3K/AKT signaling and 
BAG signaling were deduced and activated between three 
subtypes. PI3K/AKT signaling was the most highly acti-
vated pathway (Z-score = 2) in the HER2 type (Fig.  3b, 
Additional file 9: Table S8). In cluster 4, all 14 pathways 
were activated—glycolysis 1, gluconeogenesis 1, and 
tRNA charging were extensively activated in the TNBC 
types (Fig. 3c, Additional file 9: Table S8). tRNA charging 
was the most highly activated pathway (Z-score = 2.828), 
whereas EIF2 signaling was the least activated 
(Z-score = 0.333) in TNBC types (Fig.  3c, Additional 
file  9: Table  S8). In cluster 6, most pathways were acti-
vated, such as actin cytoskeleton signaling, acute phase 
response signaling, intrinsic prothrombin activation, and 
GP6 signaling, in the luminal type. Among them, GP6 
signaling was the most highly activated (Z-score = 3.464). 
However, LXR/RXR signaling was inhibited in the lumi-
nal type (Z-score = − 0.707) (Fig.  3d, Additional file  9: 
Table S8). Based on our results, distinct activation states 
exist between the HER2, TNBC, and luminal types.

Discussion
One of the goals of our study was to discover novel pro-
tein biomarker candidates of distant metastatic breast 
cancer. Initially, we considered the potential problem 
with multiple comparisons, which can generate false 
positives if unaddressed, in selecting the protein targets. 
Therefore, we applied a multiple testing correction to our 
datasets. However, none of proteins was able to pass the 
BH FDR cutoff. Thus, we proposed alternative criteria to 
compensate for the statistically insufficient significance 
of proteins in determining the protein targets.

When the criteria were applied to our in-depth 
proteome data, LTF (p-value < 0.001) and TUBB2A 
(p-value < 0.05) appeared as important protein targets 
for validation of distant metastatic potential. TUBB2A 
was upregulated and LTF was downregulated in the dis-
tant metastasis group. TUBB2A was upregulated in more 
invasive breast cancer cell lines (i.e., BC cell lines in the 
higher invasive group), whereas the expression patterns 
of LTF were perturbed across breast cancer cell lines by 
RT-PCR. Considering the expression level of TUBB2A in 
the higher-invasiveness group and the high malignancy 
of distant metastatic breast cancer [4, 58, 59], the upregu-
lation of TUBB2A might promote the invasion of breast 
cancer cells, inducing the potential of distant metastatic 

Fig. 3  Proteomic alteration in distant metastatic breast cancer between molecular subtypes. a Hierarchical clustering of differentially expressed 
proteins (DEPs) between distant metastatic breast cancer molecular subtypes (ANOVA, p-value < 0.05). The DEPs (1086) from the pooled sample 
set were divided into 6 groups. Clusters of upregulated proteins are marked in red. b–d Canonical pathway enrichment of clusters 2, 4, and 6. The 
significant pathways (Fisher’s exact test p-value < 0.05) were deduced using Ingenuity Pathway Analysis (IPA), and their activation and inhibition 
states are expressed as Z-scores

(See figure on next page.)



Page 14 of 19Shin et al. Clin Proteom           (2020) 17:16 



Page 15 of 19Shin et al. Clin Proteom           (2020) 17:16 	

breast cancer. In addition, based on the results of the 
invasion and migration assay, we verified that the high 
expression of TUBB2A increases the mobility of breast 
cancer cells, providing further support for TUBB2A as 
a novel biomarker candidate of distant metastatic breast 
cancer.

Regarding performance of TUBB2A, TUBB2A could 
distinguish between distant metastasis and nondistant 
metastasis (i.e., 78% sensitivity, 100% specificity, and an 
AUC value of 0.852) and might predict distant metas-
tasis (i.e., 88% PPV) in the individual sample set. How-
ever, because our TMT-based data were obtained from 
a small cohort (n = 36), future studies should evaluate 
the performance of TUBB2A by absolute quantitation 
in a large cohort to assess its clinical applicability, which 
lies beyond the scope of our current study. One possible 
design would be to quantify TUBB2A using targeted pro-
teomic techniques, such as multiple reaction monitoring 
(MRM) and parallel reaction monitoring (PRM).

Another goal was to determine the overall biological 
functions that exist in distant metastatic breast cancer. 
Biological functions that are related to proliferation and 
movement of cancer cells were activated. Specifically, cell 
polarization/orientation was related to cell adhesion, and 
actin-based signaling was associated with migration [60–
62]. NF-kappa B modulates the immune response, but 
its inhibition and dysregulation are linked to improper 
immune development [63, 64]. Thus, the inhibition of 
polarization of tumor cell lines and adhesion of BC cell 
lines might weaken the adhesion between cells in pri-
mary breast tumors, and the activation of actin cytoskel-
etal signaling and proliferation of tumor cell lines might 
enhance the movement of breast cancer cells. In addition, 
blocking NF kappa B binding sites might allow breast 
cancer cells to migrate to other distal sites without acti-
vating the immune system.

We noted proteins that were associated with distant 
metastatic breast cancer, based on our bioinformatics 
analysis. By GO analysis, ‘cell–cell adhesion’ terms were 
observed in upregulated and downregulated DEPs. How-
ever, each term consisted of different proteins. Further-
more, proteins in ‘adhesion of BC cell lines’ term did not 
overlap with those in the ‘cell–cell adhesion’ term. Thus, 
adhesion between breast cancer cells in primary tumors 
might be weakened, but that between breast cancer cells 
and cells in other organs could be strengthened, due to 
various proteins with potentially distinct functions in 
cell adhesion. In our pathway enrichment analysis, FN1 
overlapped between activated leukocyte extravasation 
signaling and inhibited acute phase response signal-
ing. Considering the opposing states of these pathways, 
the former might enhance the mobility of breast can-
cer cells to other organs, shuttling leukocytes out of the 

circulatory system. In parallel, inhibition of acute phase 
response signaling might suppress the immune response. 
Thus, FN1 might create a suitable microenvironment 
that is conducive to distant metastasis of breast cancer.

With regard to our protein targets, TUBB2A was asso-
ciated with cellular proliferation, movement, and adhe-
sion, and LTF was involved in cell death, the immune 
response, and metabolism. Based on these functions, 
TUBB2A might control the mobility of distant meta-
static breast cancer by regulating the adhesion and pro-
liferation of breast cancer cells, and LTF might govern 
the death of breast cancer cells and the immune system 
during distant metastasis. Thus, TUBB2A might be a key 
protein that controls the migration of breast cancer cells 
from a primary tumor. LTF might be an auxiliary protein 
that helps breast cancer cells survive during movement 
toward distal sites by disrupting the immune system.

Another goal was to determine the characteristics of 
distant metastatic breast cancer between molecular sub-
types. In cluster 2, the most highly activated pathway 
was PI3K/AKT signaling in the HER2 type. A previous 
study that used transcriptome data revealed that PI3K/
AKT kinases are expressed in circulating breast tumor 
cells and that the activation of this signal regulates their 
metastatic and malignant state [68]. Compared with our 
proteomic results, the activation states of PI3K/AKT 
signaling were consistent. Thus, our PI3K/AKT signal-
ing proteins might be associated with the regulation of 
distant metastatic potential and function as targets for 
the eradication of HER2-type distant metastatic breast 
cancer.

In cluster 4, the most highly activated pathway was 
tRNA charging signaling in the TNBC type. The exact 
functions of this pathway in distant metastatic breast 
cancer have not been determined. However, based on a 
previous study, tRNA overexpression in breast tumor 
cells might increase the translational efficiency of genes 
that are related to the progression and development of 
breast cancer [67]. The tRNA charging-related proteins 
that we recorded might be upregulated and translation-
ally modified products of such genes, influencing the 
distant metastatic potential and progression of breast 
cancer. Thus, these proteins might be targets for removal 
or suppression in slowing the malignancy of TNBC-type 
distant metastatic breast cancer.

In cluster 6, the most highly activated pathway was 
glycoprotein 6 (GP6) signaling in the luminal type. GP6 
is a platelet membrane glycoprotein that functions as a 
receptor for collagen and regulates the collagen-induced 
activation and aggregation of platelets [65, 66]. The 
detailed functions of this pathway in distant metastatic 
breast cancer have not been described. However, based 
on its functions, breast cancer cells could migrate easily 
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to distal sites, masking their aggregate forms with plate-
let-combined forms. Furthermore, breast cancer cell 
complexes might adhere to collagen and subsequently to 
platelets, leading to additional platelet aggregation. Thus, 
GP6 signaling and its factors might facilitate the circu-
lation of breast cancer cells with little activation of the 
immune systems due to their disguised forms, allowing 
them to settle at distal sites. Furthermore, the expression 
level of these proteins could be used to monitor the pro-
gression of luminal-type distant metastatic breast cancer.

Although we performed pathway enrichment analy-
sis using the upregulated DEPs in the 3 clusters, one of 
the benefits of our study was that it could have consid-
ered the downregulated DEPs in the remaining 3 clus-
ters (clusters 1, 3, and 5) in the analysis. These proteins 
might be related to distinct biological activities that sup-
press the activation of distant metastatic breast cancer 
between subtypes. Consequently, our proteomic clusters 
might expand our understanding of the effects of molec-
ular subtype on distant metastatic breast cancer.

Without our in-depth proteomic data, most of our 
DEPs might be unable to be identified or detected in 
other studies, because we are the first to collect prot-
eomic data in distant metastatic breast cancer, analyzing 
clinical FFPE tissues from primary breast tumors. Our 
results indicate that the pathological relevance of our 
FFPE tissues in BC research is valid at the proteomic level 
and in severe breast cancer pathologies. Through our 
latent data, we discovered a novel protein biomarker can-
didate that has the potential to distinguish distant meta-
static breast cancer and demonstrated distinct molecular 
features between BC subtypes. We expect that our bio-
marker candidate can be used to diagnose and predict 
distant metastatic breast cancer. Furthermore, our 
molecular pathways should provide insights into the rela-
tionship between molecular subtypes and distant meta-
static breast cancer.

Conclusions
We have constructed a comprehensive proteome of dis-
tant metastatic breast cancer by analyzing FFPE tissue 
slides using TMT-based mass spectrometric techniques. 
Our study demonstrates that the TMT-based approach is 
beneficial, because its greater quantitative ability gener-
ates a larger selection of proteins from which to choose 
novel biomarker candidates. This finding was verified 
by our proteomic dataset, which comprised the larg-
est number of proteins in distant metastatic breast 
cancer. Through our criteria, we selected 2 important 
protein targets for distant metastatic breast cancer and 
performed functional studies to validate them. Finally, 
we were able to propose a novel protein biomarker 

candidate. Furthermore, our bioinformatics analy-
sis revealed specific molecular characteristics between 
molecular subtypes. Thus, our in-depth proteomic data 
and analyses can be an important resource for distant 
metastatic breast cancer research. In future studies, we 
hope to assemble a larger cohort of breast cancer FFPE 
samples to test the performance of our novel biomarker 
candidate using targeted proteomics techniques, such as 
parallel reaction monitoring (PRM) and multiple reaction 
monitoring (MRM).
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Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1201​4-020-09280​-z.

Additional file 1: Table S1. Clinical information on patients. Clinical 
information on all 36 patients is listed. 

Additional file 2: Figure S1. Detailed experimental workflow of TMT-
based proteomic study. Graphical representation of the workflow for our 
TMT experiments. Three sample sets were analyzed using our TMT-based 
proteomic techniques. Figure S2. Identified and quantified proteins in 
TMT experiments. (a) The number of identified and quantified proteins 
in the pooled sample set, individual sample set, and cell line set. (B) The 
number of identified proteins in each sample of the individual sample 
set. (C) The number of identified proteins in each sample of the pooled 
sample set. Figure S3. Dynamic ranges of protein abundance in pooled 
sample set and individual sample set. The dynamic range of the pooled 
sample set is marked in yellow, and that of the individual sample set is 
marked in blue. Known metastatic biomarkers are indicated in red, and 
breast cancer markers are marked in black. Figure S4. Comparative 
analysis between our FFPE tissue proteome and those of our previous 
studies. (a) Comparison of identified proteins between our pooled sample 
proteome data and those of MS Jin et al. (b) Comparison of identified 
proteins between our individual sample proteome data and those of MS 
Jin et al. Figure S5. Quality assessment of MS analysis. (a) Abundance and 
technical variation of the external standard, ovalbumin. Ovalbumin was 
quantified in the middle-high abundance interval and had a CV of 4.2% 
and 6.7% in the pooled and individual sample sets in 18 TMT channels, 
respectively. (b), (c) The quantitative reproducibility of all proteins was 
improved slightly on normalization with the external standard, ovalbumin; 
the median CV value of the biological replicates of the pooled and indi-
vidual sample sets decreased by 0.36% and 1.54%, respectively. (d) Cross-
correlation analysis using the protein levels to confirm the repeatability of 
the MS analyses between experimental sets of the pooled sample set. (e) 
Variabilities in individual samples in our MS analysis are depicted in a mul-
tiscatter plot. Reproducibility between individual samples is represented 
by Pearson’s correlation value. Values of correlation with HER2 ND-2 are 
marked in red. (ND; non dis-meta, D; dis-meta, LU; luminal, - #; number 
of TMT set). Figure S6. Cell proliferation of MDA-MB 231 and Hs578T cell 
lines. Relative cell proliferation was observed for 3 days, when TUBB2A was 
knocked down, compared with the control group (siControl) (* < p-value 
0.05; ** < p-value 0.01). The time point at which the migration and inva-
sion assays were performed is indicated in the blue circle. Figure S7. 
Performance of the novel biomarker TUBB2A in the individual sample set. 
Table of summary statistics in ROC analysis, ROC curve with AUC = 0.852, 
and interactive dot diagram with sensitivity = 78%, specificity = 100%, 
and reporter ion intensity threshold = 13,178. Figure S8. Gene ontology 
analysis of all 259 DEPs in the two sample sets using The Database for 
Annotation, Visualization and Integrated Discovery (DAVID). (a) Biological 
process terms of 177 upregulated DEPs. (b) Biological process terms of 
82 downregulated DEPs (Fisher’s exact test p-value < 0.05). Figure S9. IPA 
analysis of all 259 DEPs in the two sample sets regarding canonical path-
way, and downstream biological functions. (a) Canonical pathway enrich-
ment of all 259 DEPs in the two sample sets. (b) Hierarchical clustering 
of downstream biological functions assessed by IPA using the 259 DEPs. 
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The significant pathways, and downstream biological functions (Fisher’s 
exact test p-value < 0.05) were deduced using Ingenuity Pathway Analysis 
(IPA), and their activation and inhibition states are expressed as Z-scores. 
Figure S10. Biological functions and canonical pathways related to the 
two protein targets by IPA and DAVID analysis. Biological functions and 
pathways of TUBB2A (upper panel) and LTF (lower panel) (Fisher’s exact 
test p-value < 0.05 for DAVID and IPA analysis). 

Additional file 3: Table S2. List of all identified proteins in this study. MS 
information on identified proteins is listed in the pooled and individual 
sample sets. Normalized protein levels of each sample were used for 
further statistical analysis. 

Additional file 4: Table S3. List of significantly differentially expressed 
proteins (DEPs) by student t-test. Statistically significant DEPs by student’s 
t-test (p-value < 0.05), fold-changes, p-values, and adjusted p-values (Ben-
jamini–Hochberg FDR cutoff of 0.05) in the pooled sample set, individual 
sample set, and cell line set. These proteins were used to select protein 
targets for validation of distant metastatic potential and perform the 
bioinformatics analysis. 

Additional file 5: Table S4. GO analysis using the DAVID bioinformatics 
tool. Biological processes of upregulated and downregulated DEPs by stu-
dent’s t-test are listed. The p-value (modified Fisher exact p-value) cutoff 
for the GO annotation was set to < 0.05. Genes that were associated with 
each GO term are represented as official gene symbols. ‘GO direct’ filters 
extensive GO terms, based on the measured specificity of each term. 

Additional file 6: Table S5. Downstream biological functions and 
canonical pathways of DEPs by student t-test by IPA analysis. Downstream 
biological functions and canonical pathways were examined using the IPA 
informatics tool. The p-value cutoff was set to < 0.05, and the activation 
Z-score was set to > 1. Proteins in each biological function and pathway 
are listed. P-values and Z-scores of biological functions and pathways are 
shown. 

Additional file 7: Table S6. Biological functions of TUBB2A and LTF. 
Biological functions of TUBB2A and LTF were examined using the IPA and 
DAVID bioinformatics tools. Biological processes and canonical pathways 
of TUBB2A and LTF are listed. The p-value cutoff was set to < 0.05 for the 
IPA analysis. The p-value (modified Fisher exact p-value) cutoff for the GO 
annotation was set to < 0.05. Proteins in each biological function are listed. 

Additional file 8: Table S7. List of significantly differentially expressed 
proteins (DEPs) by ANOVA. Statistical significance and p-values for DEPs 
by ANOVA (p-value < 0.05) in the pooled and individual sample sets. 
Significantly differentially expressed proteins in six clusters in each sample 
set are listed. The proteins in clusters 2, 4, and 6 of the pooled sample set 
were used to perform a bioinformatics analysis of the molecular charac-
teristics of distant metastatic breast cancer between molecular subtypes. 
Adjusted p-values for DEPs in the pooled sample set are listed (Benjamini-
Hochberg FDR cutoff of 0.05). 

Additional file 9: Table S8. Canonical pathways of clusters enriched 
by IPA analysis. Canonical pathways in clusters 2, 4, and 6 of the pooled 
sample set were investigated using the IPA informatics tool. Canonical 
pathways between molecular subtypes are listed. The p-value cutoff 
was set to < 0.05, and the activation Z-score was set to > 1. P-values and 
Z-scores of the canonical pathways are listed.
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