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Abstract 

Background:  ALK tyrosine kinase inhibition has become a mainstay in the clinical management of ALK fusion posi‑
tive NSCLC patients. Although ALK mutations can reliably predict the likelihood of response to ALK tyrosine kinase 
inhibitors (TKIs) such as crizotinib, they cannot reliably predict response duration or intrinsic/extrinsic therapeutic 
resistance. To further refine the application of personalized medicine in this indication, this study aimed to identify 
prognostic proteomic biomarkers in ALK fusion positive NSCLC patients to crizotinib.

Methods:  Twenty-four patients with advanced NSCLC harboring ALK fusion were administered crizotinib in a phase 
IV trial which included blood sampling prior to treatment. Targeted proteomics of 327 proteins using MRM-MS was 
used to measure plasma levels at baseline (including pre-treatment and early treatment blood samples) and assess 
potential clinical association.

Results:  Patients were categorized by duration of response: long-term responders [PFS ≥ 24 months (n = 7)], normal 
responders [3 < PFS < 24 months (n = 10)] and poor responders [PFS ≤ 3 months (n = 5)]. Several proteins were identi‑
fied as differentially expressed between long-term responders and poor responders, including DPP4, KIT and LUM. 
Next, using machine learning algorithms, we evaluated the classification potential of 40 proteins. Finally, by integrat‑
ing the different analytic methods, we selected 22 proteins as potential candidates for a blood-based prognostic 
signature of response to crizotinib in NSCLC patients harboring ALK fusion.

Conclusion:  In conjunction with ALK mutation, the expression of this proteomic signature may represent a liquid 
biopsy-based marker of long-term response to crizotinib in NSCLC. Expanding the utility of prognostic biomarkers of 
response duration could influence choice of therapy, therapeutic sequencing, and potentially the need for alternative 
or combination therapy.
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Background
Non-small cell lung cancer (NSCLC) represents 85% of 
lung cancers, 64% of which contain oncogenic driver 
mutations [1, 2]. In 3–7% of the cases, rearrangements in 
the anaplastic lymphoma kinase (ALK) gene is observed 
and is demographically associated with younger patients 
who are light- or non-smokers [3, 4]. Its main fusion 
partner is echinoderm microtubule-associated protein-
like 4 (EML4) found in about 80% of the patients, with 
more than a dozen different EML4-ALK variants docu-
mented [5]. The remaining 20% is composed of low fre-
quency fusions between ALK and numerous other genes 
like KIF5B and TFG [6].

The identification of ALK fusion as the main driver in 
this subset of NSCLC, led to the pharmacological devel-
opment of drugs inhibiting ALK kinase activity. Crizo-
tinib was the first molecule to be FDA approved and was 
used as first line therapy in ALK fusion positive NSCLC 
patients with a 74% response rate. Unfortunately, most 
patients progress within 1–2 years due to acquired resist-
ance occurring via two types of mechanisms: on-target 
with the acquisition of secondary mutations in the tyros-
ine kinase domain of ALK, decreasing drug efficacy and, 
off-target through the activation of alternative signaling 
pathways. Over the last few years, second- and third-gen-
eration ALK inhibitors have been developed to overcome 
some of the resistance mechanisms link to crizotinib 
exposure, as well as, increased potency, selectivity and 
blood–brain barrier permeability [7–11]. Resistance to 
next-generation ALK-TKIs also arises or develops and is 
more difficult to overcome with numerous patients car-
rying compound mutations in ALK or developing/acti-
vating off-target mechanisms. The perpetual adaptation 
of tumor cells to ALK-TKIs leading to acquired resist-
ance remains a major challenge in treating ALK fusion 
positive NSCLC patients, and identification of prognostic 
biomarkers could help guide treatment choice, as well as 
sequence of administration.

This study aimed to evaluate prognostic proteomic bio-
markers predictive of response to crizotinib in patients 
diagnosed with locally advanced or metastatic ALK 
fusion positive NSCLC. Patients were administered 
crizotinib according to standard of care, then catego-
rized into three groups by duration of response. Base-
line blood samples were analyzed by multiple-reaction 
monitoring-mass spectrometry to identify plasma pro-
tein levels in patients prior to therapy. We identified 

several proteins significantly differentially expressed in 
long-term responders compared to poor responders. In 
parallel, using machine-learning algorithms, we identi-
fied 40 proteins more likely to predict patient duration 
of response and propose that 22 of these proteins should 
be investigated further to refine a molecular signature of 
long-term response to crizotinib.

Methods
Study oversight
We conducted a prospective observational study 
(NCT02041468) at 5 major cancer centres in Canada. The 
study was approved by the institutional review board at 
each participating hospital. All patients provided written 
informed consent prior to any study specific procedures.

Trial design, treatment and assessments
This phase IV study was performed in a real-world con-
text for locally advanced or metastatic ALK fusion posi-
tive NSCLC patients between January 31, 2014 and July 
31, 2018 (cut-off date).

ALK rearrangement status was assessed on FFPE 
primary lung tumor or fine needle aspirates either by 
immunohistochemistry using ALK antibody clones 5A4 
(Novocastra or Biocare) or D5F3 (Cell Signalling Tech-
nologies), or by fluorescent in  situ hybridization (FISH) 
using the Vysis LSI ALK Break Apart FISH Probe Kit.

Study objectives included confirmation of measures of 
efficacy of crizotinib therapy (progression-free survival 
[PFS], disease control rate [DCR] and time to treatment 
discontinuation) and assessment of blood-based bio-
markers of response or resistance to crizotinib. Response 
to treatment was assessed by radiological imaging within 
30 days of starting treatment and every 8–12 weeks dur-
ing treatment until progression. Objective response was 
measured at each evaluation using the Response Evalua-
tion Criteria in Solid Tumors (RECIST) v.1.1 [12].

Treatment with crizotinib followed standard of care. 
Patients received oral crizotinib at a dose of 250  mg 
twice daily, or 200  mg twice daily in the case of toxic-
ity and continuation beyond progression of disease was 
left to the opinion of the treating physician. Five out of 
24 patients (20.8%) were already receiving crizotinib 
therapy when enrolled in this study. Two out of these 5 
patients were treated with crizotinib in combination with 
the HSP90 inhibitor onalespib (AT13387; Astex Pharma-
ceuticals) in a previous clinical trial (NCT01712217). A 

Trial registration ClinicalTrials.gov, NCT02041468. Registered 22 January 2014, https​://clini​caltr​ials.gov/ct2/show/NCT02​
04146​8?term=NCT02​04146​8&rank=1
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total of 22 samples were analyzed for individual protein 
expression levels and combined protein panels.

Blood sample collection
Prior to treatment administration, blood samples were 
drawn, collected in k2EDTA Vacutainer® tubes and cen-
trifuged within 60 min of collection at 1500g for 15 min 
at room temperature. Plasma was harvested, aliquoted 
and stored at − 80 °C.

Target and peptide selection assay
Using an untargeted mass-spectrometry approach, 
more than four thousand proteins were identified in tis-
sue samples from patients with both ALK-fusion posi-
tive and -fusion negative NSCLC not part of the patients 
described in the present study. Three hundred twenty-
seven (327) target proteins represented by 900 peptides 
were selected from the discovery study and optimization 
phase, which included a large fraction of secreted pro-
teins and additional targets of interest.

Blood sample processing and multiple reaction monitoring 
(MRM) analysis
Samples (30  μL) were depleted of high and medium 
abundance proteins by immunoaffinity chromatogra-
phy using commercially available IgY14-SuperMix resin 
(10 × 100 mm column, Agilent) and a 1200 HPLC instru-
ment (Agilent) equipped with a thermostated autosam-
pler and fraction collector.

The unbound fraction [flow through (FT)], containing 
the remaining lower abundance proteins, was collected 
for each sample and freeze-dried prior to digestion. 
The FT fractions were re-solubilized and digested with 
trypsin [1:10 (w:w) enzyme: protein ratio, Promega Cor-
poration] at 37  °C with shaking overnight. The digested 
samples were spiked with 20 μL of a 20 pmol/mL crude 
stable isotope-labeled (SIL) peptide mix (see section 
below) and desalted using Oasis mixed-mode cation-
exchange (MCX) resin in a 96-well plate format (Waters). 
Desalted peptides were vacuum evaporated and stored at 
− 20 °C until MRM analysis.

For MRM analysis, the samples were re-solubilized and 
spiked with 5 internal standard peptides for instrument 
monitoring. Ten μg of each sample was injected onto a 
NanoAcquity UPLC (Waters) coupled to a QTRAP 5500 
mass spectrometer. Peptide separation was achieved 
using a Halo Peptide ES-C18 500  μm × 10  cm column, 
2.7  μm particle size (Advanced Materials Technology). 
The gradient time was 30  min, and the flow rate was 
18 µL/min. Peptide signals were integrated using Multi-
Quant software (AB Sciex). The CE value giving the most 
intense signal for each transition was determined using 
in-house software developed by Caprion.

Differential protein expression analysis
To generate a protein signature predictive of a long-
term response in ALK fusion positive NSCLC, protein 
abundance ratios from long-term responders and nor-
mal responders were compared. To be included in the 
signature, proteins needed to be differentially expressed 
between long-term and normal responders with a 
P-value < 0.1 and have a similar fold change sign in long-
term versus poor responder groups comparison, result-
ing in 15 proteins being selected.

The proteomic expression matrix containing the abun-
dance of the 126 proteins detected was used as input to 
perform hierarchical clustering (Euclidean, complete 
linkage) of the protein signature, as well as principal 
component analysis. The ssGSEA Projection tool (https​
://genep​atter​n.broad​insti​tute.org) was used on the same 
matrix as the protein signature, and the score obtained 
for each patient was visualized. This analysis leverages 
the presence of multiple, correlated sources of informa-
tion about biological processes (the proteomic expres-
sion matrix) to determine the activity level of underlying 
biological processes that belie coordinated expression 
patterns of particular genes or proteins (the signature). 
The purpose of this multivariate analysis was to iden-
tify potential biomarkers that interacted with each other 
that would not have been detected in simple univariate 
analyses.

Panel analysis strategy
To focus the search of biomarker candidates that could 
act in concert to predict response duration, four algo-
rithms (extreme gradient-boosted decision trees, least 
absolute shrinkage and selection, ridge regression, and 
elastic net regression [13–17]) were given centered, unit 
variance protein intensities and trained to discriminate 
long-responders from either non-responders or nor-
mal responders. Classifications were repeated with 100 
randomized column orders with 100 cross-validations 
each, using half of the data as a training set. Estimates 
for each algorithm were subsequently averaged across 
these 10,000 trials. An importance measure was then 
calculated (gain for decision trees or squared coefficient 
for penalized regressions) for each protein. Following a 
rate-change detection scheme (previously described [18]) 
performed on the survivor function of importance val-
ues attributed by each algorithm, changes in importance 
survival rate were tested. All proteins with importance 
greater than that which marked a change in survival rate 
were considered selected by an algorithm. Proteins were 
considered for panel analyses if at least one algorithm 
had selected them in either classification. A resulting 52 
proteins were selected for panel testing.

https://genepattern.broadinstitute.org
https://genepattern.broadinstitute.org
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Panels of every combination of up to 3 of these selected 
proteins were fit by bias-reduced general linear modeling 
(R package brglm). The performance of each panel was 
assessed by calculating the area under the receiver oper-
ating characteristic (ROC) curve (AUC). This was esti-
mated 100 times for each panel using stratified sampling 
to split the data into halves that served as training and 
test sets. Logistic regression models were fit to the train-
ing half and used to calculate out-of-sample predictions 
for the test half and the AUC of the resulting cross-val-
idation sample. For each cross-validation sample, a null 
hypothesis AUC was empirically determined by fitting 
logistic regression models to 50 shuffles of the training 
set labels with respect to their protein levels and taking 
the median out-of-sample AUC. The difference between 
this null AUC and the theoretical null of 0.5 (the “opti-
mism”) was then removed from the cross-validation sam-
ple’s AUC.

Overall, optimism-corrected performance for a panel 
was calculated as the median across those 100 estimates; 
confidence intervals were derived from the 2.5 to 97.5% 
quantiles. ROC curves were generated using the same 
cross-validation procedure, averaging sensitivity and 
specificity values across all 100 cross-validation trials. To 
assess protein contributions to panels, the proportion of 
panels with optimism-corrected AUC greater than 0.85 
containing the protein was calculated.

Results
Patient characteristics and clinical outcome
Twenty-four ALK fusion positive NSCLC patients were 
enrolled and administered crizotinib, with the aim of 
identifying prognostic proteomic and genomic biomark-
ers of response to crizotinib [19]. This study showed 
that there are likely multiple prognostic genomic bio-
markers besides ALK mutations, that could be reflected 
in proteins other than ALK fusion-related protein 

products. The median PFS was 13.1 months (range 1.1–
43.6 months, 95% CI 4–26.9 months, Fig. 1a), 2.2 months 
longer than reported in the literature (10.9 months) [20]. 
Interestingly, we observed a subset of patients with a 
durable response to crizotinib (≥ 24  months), which 
was driving this overall increase in PFS. Following this 
observation, patients were categorized into 3 groups 
based on PFS (Fig.  1b and Additional file  1: Table  S1): 
poor, normal and long-term responders. Poor respond-
ers (5 patients) exhibited disease progression at first 
radiologic disease evaluation following treatment initia-
tion (PFS ≤ 3  months). Normal responders (10 patients) 
experienced stable disease or an initial response but 
progressed after 3 to 24  months (3 < PFS ≤ 24  months). 
The upper cut-off for normal responders was estab-
lished based on published data showing the duration 
of response to ALK-TKIs typically lasts no longer than 
2 years. Long-term responders (7 patients) demonstrated 
a PFS greater than 24 months (PFS > 24 months). PFS was 
unknown for one patient withdrawn due to toxicity, and 
for one patient who withdrew consent.

Selection of proteins for the multi‑reaction monitoring 
analysis
A previous untargeted mass-spectrometry study using 
tissue samples from an independent patients cohort with 
both ALK-fusion positive and fusion negative NSCLC 
led to the identification of 327 proteins represented by 
900 peptides, which include a large fraction of secreted 
proteins and additional targets of interest for this type 
of cancer [21]. In this study, using the aforementioned 
proteins, a targeted proteomic approach was performed 
on pre-treatment plasma samples to identify biomarkers 
predicting duration of response. From the initial set of 
327 proteins monitored by the targeted approach, meas-
urements were obtained for 126 proteins across most 
samples. Two complementary methods were used to 

Fig. 1  Progression-free survival. a Progression-free survival for the entire cohort. b Cohort stratified by duration of response



Page 5 of 10Couëtoux du Tertre et al. Clin Proteom            (2020) 17:5 	

discover proteins with prognostic potential in the present 
cohort: differential expression and classifier analysis.

Differential expression analysis
First, we investigated the presence of signal in our data 
by identifying proteins differentially expressed in the pre-
treatment or early treatment blood samples between the 
different groups of patients. The abundance ratio for each 
protein was compared between long-term and normal 
responders or long-term and poor responders (Addi-
tional file  2: Fig. S1a). A one-way ANOVA of the effect 
of patient group on expression levels was performed; 
multiple comparison corrections (q-values) were com-
puted according to Benjamini & Hochberg [22]. We were 
particularly interested in the long-term versus normal 
comparison, but unsurprisingly, considering the small 
sample size, no protein reached significance after correc-
tion for false discovery rate. As a result, we ranked these 
proteins according to their p-value and selected the top 
15 proteins (Additional file 3: Table S2) with a difference 
in abundance between long-term and normal groups 
(p < 0.1), which were also differentially expressed in the 
same direction between long-term and poor responders.

We then used hierarchical clustering and principal 
component analysis (PCA) to visualize whether these 
15 proteins could separate patients according to their 
response group (Fig. 2a, b). Both methods were successful 
in separating long-term responders and poor responders. 
However, the distinction between long-term and normal 
responders was less obvious. To generate a prognostic 
score, based on the top 15 proteins, in ALK fusion posi-
tive NSCLC patients treated with crizotinib, we applied 
the single sample Gene Set Enrichment analysis (ssGSEA) 
method [23], and computed enrichment scores for each 
patient in our cohort. We found that all patients in the 
long-term responder group had the highest scores, fol-
lowed by the normal and then the poor responder groups 
(Fig.  2c). These preliminary results are encouraging as 
they demonstrate the presence of a proteomic signal able 
to distinguish patients with different PFS in response to 
crizotinib, but unfortunately this method does not allow 
us to determine which prospective patients will have a 
longer duration of response to crizotinib.

Identification of a classifier
Our main goal was to generate a prognostic proteomic 
signature for NSCLC patients harboring ALK fusion and 
treated with crizotinib. To identify combinations of pro-
teins that, when taken in concert, could collectively pre-
dict patient response duration in the current cohort, an 
exploratory classifier analysis was performed. We used 
four machine-learning algorithms [13–15, 17] to bet-
ter focus the search of likely candidates among the 126 

proteins quantitated. Two classifications were performed 
in parallel: long-term versus normal and long-term ver-
sus poor. Proteins that were well-suited to either classi-
fication according to the machine-learning algorithms 
were combined for further analyses (a total of 52 pro-
teins; Additional file 2: Fig. S1b).

In the following step, the optimal panel size that bal-
anced bias and variance was identified by assessing these 
errors for the panel of increasing size, taking the most 
important proteins (according to the machine-learning 
algorithms) first in a a stepwise “greedy” fashion. The 
optimal panel size was determined to be between 1 and 3 
predictors by this method.

Finally, panel analysis was performed using a general-
ized linear model using the subset of 52 proteins identi-
fied by the machine learning algorithms in all possible 
combinations of 1 to 3 proteins. Numerous panels had 
an area under the receiver operating characteristic curve 
(AUC) greater than the pre-selected cut-off of 0.85, espe-
cially when comparing long-term versus poor respond-
ers (Additional file  4: Fig. S2). Overall, 1914 long-term 
vs. normal panels and 8377 long-term vs. poor responder 
panels had AUC greater than 0.85.

Final Selection of putative proteins for blood‑based 
signature
Considering the huge number of potential panels, we 
decided to look at the contributions of individual pro-
teins across the panels with AUC greater than 0.85 to 
identify which proteins should be prioritized. Of the 
52 proteins included in the exploratory panel analysis 
search, 33 (long-term vs. poor) and 15 (long-term vs. 
normal) were components of more than 5% of the com-
binations with high performance (AUC greater than 0.85; 
Fig. 3a and Additional file 2: Fig. S1c). As the number of 
proteins to prioritize was still high, we decided to inter-
sect the entire list of proteins derived from the various 
analyses (Fig.  3a), leading to a final list of 22 proteins 
for putative blood-based signature (Additional file  5: 
Table  S3). Of note, the top protein contributing to the 
panel in long-term versus normal and long-term versus 
poor were different, FCGBP and DPP4, respectively; fur-
thermore, each showed a significant relationship between 
their expression level and PFS (Fig. 3b, c). Interestingly, 3 
proteins, DPP4, KIT and LUM, were identified with both 
methods, making them the most attractive targets. The 
abundance ratio for each responder group for these three 
proteins is shown in Fig.  3d–f. Additional file  6: Fig. S3 
shows the differential expression of 12 proteins for each 
responder group. An example receiver operating charac-
teristic curve from a panel of 3 proteins with a promis-
ing AUC value (DPP4, FCGBP and LUM) is presented in 
Fig. 3g.
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Discussion
The use of liquid-biopsy to identify biomarkers for vari-
ous stages of lung cancer patients has been extensively 
investigated, with the strongest focus on the diagnosis of 

malignancy in lung nodules regularly followed by costly 
repeated radiation exposure to serial CDT imaging [24]. 
To our knowledge, this is the first report of a blood-
based prognostic putative proteomic signature in locally 

Fig. 2  Graphical representation of the top 15 proteins differentially expressed between long and normal responders. Colors represent the 
duration of response groups, blue for poor responders, red for normal responders and green for long-term responders. a Hierarchical clustering of 
the patients using the 15 proteins differentially expressed between long-term versus normal responders. b PCA plot using the same 15 proteins 
list than (a). c ssGSEA score was calculated for each patient using the 15 most differentially expressed proteins between long-term and normal 
responders then ranked



Page 7 of 10Couëtoux du Tertre et al. Clin Proteom            (2020) 17:5 	

Fig. 3  Candidate proteins to classify ALK + NSCLC patients by duration of response to crizotinib. a Venn Diagram of the protein list identified with 
both methods (differential expression = DE, classifier = P) and both comparisons (Long vs Normal and Long vs Poor). Kaplan–Meier plots where 
patients were separated in two groups based on the median expression value of DPP4 (b) or FCGBP (c) two of the top contributing protein in long 
versus normal panel analysis. d–f Normalized log2LH ratio of three proteins (DPP4, LUM, KIT) in each of the response groups. g ROC curve of one of 
the best panels obtained in long versus normal comparison which includes DPP4, FCGBP and LUM
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advanced or metastatic ALK fusion positive NSCLC 
treated with an ALK-TKI.

We used targeted proteomics on blood samples col-
lected from patients prior to crizotinib treatment to 
identify potential biomarkers of duration of response to 
ALK tyrosine kinase inhibition. Combining two comple-
mentary methods, we identified 22 candidate proteins 
with prognostic potential in ALK fusion positive NSCLC 
treated with crizotinib, 3 of which (DPP4, LUM and KIT) 
were consistently identified in all comparisons and analy-
ses performed. Further validation will be needed using an 
independent cohort however we believed that this list of 
proteins is a good starting point for more in depth inves-
tigation. Interestingly, previous studies have reported 
a relationship between the expression of some of these 
proteins and disease progression.

The first of the top three we identified is LUM (lumi-
can), a glycoprotein which is  involved in the extracellu-
lar matrix (ECM) formation and regulation  and which 
can have a strong impact on the tumor microenvironne-
ment or stroma function. Modulation of tumor stroma 
activity can affect apoptotic signaling pathway, facilitate 
tumor cell migration, angiogenesis, hypoxia and drug 
delivery all  of which are key processes associated with 
tumor response to treatment. Several previous stud-
ies have investigated the role of lumican in tumor biol-
ogy, for example downregulation of lumican was shown 
to accelerate lung cancer cell invasion through the p120 
catenin pathway [25] and in stage II and III colon can-
cer patients high expression of lumican in tumor tissues 
was associated with good clinical outcome [26]. Here, we 
observed that  the plasma level of lumican is also asso-
ciated with a better prognosis in ALK fusion positive 
NSCLC patients treated with crizotinib. The second best 
candidate is CD26/DDP4 a transmembrane glycoprotein 
with proteolytic activity,  which also  exists in an enzy-
matically active soluble form which has been proposed as 
an important tumor biomarker in different types of can-
cer [27]. Higher plasma level of DPP4 has been found to 
be associated to better survival in multiple cancer types 
combined [28]. Furthermore, soluble low DPP4 level has 
been suggested to be a prognostic biomarker for colo-
rectal and prostate cancers as well as NSCLC malignant 
pleural effusions [29–31]. The last candidate is c-KIT 
transmembrane receptor tyrosine kinase in soluble form. 
A  previous study reported that higher level of soluble 
KIT in plasma was shown to be associated with enhanced 
survival in response to sorafenib (another TKI) treatment 
in advanced hepatocellular carcinoma [32]. Despite the 
numerous studies showing prognostic values of these 
three proteins little is known  about the biological rea-
sons behind their association with survival and disease 
progression.

Lung cancer patients are a really challenging popula-
tion in which to collect high quality tissue specimens and 
this has led to an increased interest in developing assay 
and biomarker detection from blood samples. Access 
to plasma samples from ALK fusion positive NSCLC 
patients untreated with an ALK-TKI, with associated 
outcome data following drug administration, is a chal-
lenge and that made access to a validation cohort impos-
sible, which is of course  one of the main limitations of 
this study. However, we hope that this discovery work 
will be a starting point for further studies and collabora-
tion aimed at validating and refining the prognostic pro-
tein signature.

As sequential therapy approaches in ALK fusion posi-
tive NSCLC patients remain controversial and not yet 
well defined, our results may provide further insights 
in clinical decision making about  the  optimal order of 
administration of the various ALK-TKI therapies avail-
able. Following independent validation, we believe this 
signature could become a cornerstone in ALK-TKI treat-
ment which may improve the clinical impact of first-line 
and sequential treatment in ALK fusion positive NSCLC.

Conclusion
In the present study, we highlighted 22 proteins with prog-
nostic potential in NSCLC patients harboring ALK fusion 
and treated with crizotinib, alone or in combination under 
the form of a signature. As resistance remains a major 
challenge in the treatment of these patients, we believe 
that developing a signature or biomarkers able to classify 
patients by duration of response to treatment could lead to 
better use of the various drugs available to them.
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org/10.1186/s1201​4-020-9269-6.
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for normal responders and green for long-term responders. 

Additional file 7: Table S4. Normalized log2LH ratio of all the proteins 
measured in all baseline samples.
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