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Abstract 

Background:  The rapid advancements of high throughput “omics” technologies have brought a massive amount of 
data to process during and after experiments. Multi-omic analysis facilitates a deeper interrogation of a dataset and 
the discovery of interesting genes, proteins, lipids, glycans, metabolites, or pathways related to the corresponding 
phenotypes in a study. Many individual software tools have been developed for data analysis and visualization. How-
ever, it still lacks an efficient way to investigate the phenotypes with multiple omics data. Here, we present OmicsOne 
as an interactive web-based framework for rapid phenotype association analysis of multi-omic data by integrating 
quality control, statistical analysis, and interactive data visualization on ‘one-click’.

Materials and methods:  OmicsOne was applied on the previously published proteomic and glycoproteomic data 
sets of high-grade serous ovarian carcinoma (HGSOC) and the published proteome data set of lung squamous cell 
carcinoma (LSCC) to confirm its performance. The data was analyzed through six main functional modules imple-
mented in OmicsOne: (1) phenotype profiling, (2) data preprocessing and quality control, (3) knowledge annotation, 
(4) phenotype associated features discovery, (5) correlation and regression model analysis for phenotype association 
analysis on individual features, and (6) enrichment analysis for phenotype association analysis on interested feature 
sets.

Results:  We developed an integrated software solution, OmicsOne, for the phenotype association analysis on multi-
omics data sets. The application of OmicsOne on the public data set of ovarian cancer data showed that the software 
could confirm the previous observations consistently and discover new evidence for HNRNPU and a glycopeptide of 
HYOU1 as potential biomarkers for HGSOC data sets. The performance of OmicsOne was further demonstrated in the 
Tumor and NAT comparison study on the proteome data set of LSCC.

Conclusions:  OmicsOne can effectively simplify data analysis and reveal the significant associations between pheno-
types and potential biomarkers, including genes, proteins, and glycopeptides, in minutes to assist users to understand 
aberrant biological processes.
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Background
A phenotype can be defined as any observable charac-
teristic or state of an organism resulting from interac-
tions between genes, environment, disease, molecular 
mechanisms, and chance [1]. The purpose of phenotype 

association analysis in genomics and proteomics for 
disease studies is to illustrate the relationship between 
protein expression and clinical phenotypes. With the 
advancements of high-throughput “omics” technolo-
gies, including genomics, epigenomics, transcriptomics, 
proteomics, protein modifications, glycomics, lipidom-
ics, and metabolomics, the incredible volume of data has 
been produced [2–7]. Predictably, the trend of generat-
ing large datasets will continue as novel technologies are 
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being developed and current approaches advance. In this 
era of omics data explosion, an automated solution for 
multi-omics phenotype association analysis will signifi-
cantly increase knowledge discovery from a large amount 
of data in the studies of diseases, such as cancers.

In the past decades, many efforts have been made in 
bioinformatics tools development for automated omics 
data analysis and visualization, including commercial 
solutions of Ingenuity Pathway Analysis [8] (Ingenu-
ity Systems, QIAGEN Inc.) and ProteinCenter (Thermo 
Scientific/Proxeon) and non-commercial tools, includ-
ing infernoRDN (former DanTE and DanteR) [9, 10], 
ProteoSign [11, 12], GproX [13], DAPAR/ProStaR [14], 
GiaPronto [15], Perseus [16], PANDA-view [17], and 
IOAT [18]. Those tools were developed to perform the 
statistical analysis of quantitative discovery proteomics 
experiments, which contain procedures to do data pro-
cessing, perform null hypothesis significance tests, gen-
erate the visualization of quantitative proteomics data 
and other -omics data, and the following Gene Ontol-
ogy (GO) [19] enrichment analysis. However, all these 
tools are designed for routine workflow of data analysis 
for omics data. There are still some problems with auto-
mated phenotype association analysis. (1) Those tools 
lack a practical integration mode. The functional mod-
ules are separated in different pages and not optimally 
organized for  an efficient automated pipeline. (2) Those 
tools lack the support of investigation of phenotypes and 
association analysis between phenotype and post-transla-
tional modifications (PTMs), especially for glycosylation. 
(3) Most of these tools only provide limited extensibil-
ity for customized databases and scripts and static data 
visualization.

To address these issues, here we present the tool Omic-
sOne, a software developed in Python based on Dash 
framework [20] that can perform the automated phe-
notype association analysis for multi- “omics” data in a 
‘one-click’ mode. The quantitative expression matrices 
and clinical information table were the only required 
inputs for initializing phenotype of association analysis. 
The results are reported in tab-separated text.txt or.csv 
file formats and visualized in an interactive web-based 
graphical interface in a web browser by a simple ‘one-
click’ button. In addition, OmicsOne added supports for 
annotation and phenotype association analysis for intact 
glycopeptides. Protein post-translational modifications 
(PTMs) play a crucial role in protein and gene expres-
sion and various cellular mechanisms, increasing the 
complexity and diversity of the proteome [21–23]. Pro-
tein glycosylation is one of the most abundant examples 
of PTMs [24], as it is a critical factor in various biologi-
cal functions such as cell–cell recognition, cell–cell adhe-
sion, determining protein structure, and involvement 

in human disease [25–29]. Because of its link to human 
disease, glycosylation research has allowed a link to be 
established between altered glycoproteins and abun-
dant cancer cell traits [30]. All the functional modules 
of OmicsOne support the analysis of eligible expression 
matrices of mRNA, protein, and intact glycopeptides to 
discover interesting molecules or pathways related to the 
corresponding phenotypes in a study. OmicsOne also 
supports interactive data visualization and extensibility to 
integrate with users’ customized Python scripts and data-
bases in the data processing pipeline, facilitates a deeper 
interrogation of a dataset. OmicsOne is free available 
on GitHub (https://​github.​com/​huizh​anglab-​jhu/​Omics​
One) and can be installed and run locally in Python 3.8 
environment in Microsoft Windows. The minimum 
hardware configuration requirements are 2-cores CPU 
(e.g., Intel i5-6300U) and 12 GB RAM.

Methods
Input file format
OmicsOne was initially designed for isobarically labeled 
quantitative proteomics data (e.g., tandem-mass-tag 
(TMT)) but can find applications in label-free quantita-
tion and Data Independent Acquisition (DIA) datasets, as 
well as other “omics” data if the data fits the input format 
shown in Fig.  1. The two sample data sets are included 
in the installation package and installed with the soft-
ware together. In the default settings, OmicsOne accepts 
the log2-transformed expression matrices saved as ‘wide’ 
format, in which samples names are the row indices and 
feature names (gene name or glycopeptide) are the col-
umn labels (Fig. 1). To be compatible with intact glyco-
peptide analysis, the name of intact glycopeptide, also 
called glycoform, is defined as GeneName_PeptideStart-
Site_PeptideSequence_GlycositeNumber_GlycositePo-
sition_Glycancomposition. The name of protein is the 
corresponding gene name.

The sample data sets embedded in OmicsOne instal-
lation are also downloadable in the Github repository. 
OmicsOne also allows users to add their customized 
annotation databases in the sample folder for knowledge 
annotation, pathway databases for enrichment analysis.

Software modules
We developed OmicsOne under Python 3.8 for auto-
mated multi-omics data analysis to discover molecu-
lar changes and pathways associated with phenotypes. 
OmicsOne integrated scientific Python packages for 
statistical calculation and data visualization, including 
NumPy(v1.21.4) [32], SciPy(v1.7.1) [33] for statistical 
calculation, Pandas(v1.3.4) [34] for data table manipu-
lation, Scikit-learn(v0.24.2) [35] for machine learn-
ing, GSEApy(v0.10.5) [36–38] for gene set enrichment 
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analysis, and Plotly(v5.3.1) and Dash(v2.0.0) [20] for 
interactive data visualization and dashboard construc-
tion. All functions were integrated into an efficient 
analysis suite after modular development, which pro-
vides six main functional modules: (1) phenotype pro-
filing, (2) data preprocessing and quality control, (3) 
knowledge annotation, (4) phenotype associated fea-
tures discovery, (5) correlation and regression model 
analysis for phenotype association analysis on individ-
ual features, and (6) enrichment analysis for phenotype 
association analysis on interested feature sets (Fig.  1). 

The results were visualized as webpage-based interac-
tive figures. The details of the six implemented modules 
are described in the following sections.

Module 1. Phenotype profiling
Understanding the composition of data cohort is always 
the first and critical step for all the following studies for 
phenotype association analysis. OmicsOne supports 
statistics on the phenotype information to calculate the 
population of samples in different phenotype groups. 

Phenotype (P) P1 P2 P3 …

Sample ID 1

Sample ID 2

Sample ID 3

…

Clinical informa�on table

Module 1: Phenotype profiling: 
characteriza�on and correla�on

Module 2: Preprocessing and quality control:
Sample correla�on and coefficient of variant (CV)

Module 4: phenotype-associated feature discovery

Module 3: Knowledge annota�on

Phenotype associa�on 
on individual features

Phenotype associa�on 
on interested feature sets

Module 6: Enrichment analysisModule 5: Correla�on and Regression 
model analysis

Differen�al expression Dimensionality reduc�on Feature clustering 

Feature (F) F1 F2 F3 …

Sample ID 1

Sample ID 2

Sample ID 3

…

Omics expression matrices 

Feature (F) F1 F2 F3 …

Sample ID 1

Sample ID 2

Sample ID 3

…

Feature (F) F1 F2 F3 …

Sample ID 1

Sample ID 2

Sample ID 3

…

mRNA
Protein

Glycopep�de

Fig. 1  The software operation process. Module 1: Phenotype characterization and correlation; Module 2: Data quality evaluation; Module 3: 
Knowledge database annotation for all identifications; Module 4: Feature (gene, protein, PTM) selection using differential expression analysis, 
dimensionality reduction, and clustering; Module 5: Correlation and regression model analysis for phenotype associated with the individual feature; 
Module 6: Enrichment analysis for phenotype association with feature sets
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OmicsOne will also investigate the pairwise correlation 
of phenotypes to reveal the dependencies between the 
phenotypes.

Module 2. DATA preprocessing and quality control
It is often necessary to preprocess the raw data before 
data analysis to fit the algorithm requirements and 
control data quality. OmicsOne provides several 
essential preprocessing functions, including (1) Log-
transformation algorithm, which supports the conver-
sion of the expression values to log2 values. OmicsOne 
accepts log2-transformed data by default. (2) Normaliza-
tion algorithm. We implemented the commonly applied 
median normalization method to adjust the median val-
ues of all features in all samples to the same (default is 
0) to reduce the potential batch effect and measurement 
erros. (3) Noise filtration algorithm. We removed the fea-
tures expressed less than 50% (user defined) samples as 
noise features, and (4) Imputation algorithm. Three basic 
imputation methods were implemented in OmicsOne 
including: GlobalMin: impute the missing value using a 
scaled global minimum value; SampleMin: impute scaled 
minimum value in the row (the minimum value of all 
features in this sample); and FeatureMin: impute scaled 
minimum value in the row (the minimum value of this 
feature among all samples).

The evaluation of the reproducibility of quality con-
trol samples is another critical step before the phenotype 
association analysis. OmicsOne supports calculating the 
correlation values of technical or biological replicates and 
coefficient of variation (CV) of the selected quality con-
trol samples to estimate the reproducibility of measured 
gene or protein level expression.

Module 3. Knowledge annotation
The gene annotation function can help the understanding 
of biological functions. A quick annotation tool is critical 
for automated data analysis and manual investigation. In 
OmicsOne, the features are automatically annotated and 
linked to the knowledge databases (e.g., UniProtKB [39] 
for gene and protein annotation and N-Glycositeatlas 
[40] database for N-linked glycosite annotation). Up to 
our knowledge, there is not a large-scale database con-
taining the specific information to link glycosites to phe-
notypes of diseases. Thus, this tool is useful to link the 
results of phenotype association analysis of glycopeptides 
directly to the knowledge database. N-GlycositeAtlas is 
a database containing sample information of historically 
published glycosites. OmicsOne provides the function 
for both database annotation based on GlycositeAtlas 
and phenotype association analysis for the newly dis-
covered glycopeptides. Users can also add their custom-
ized database to extend the annotation or export their 

identification with original GlycositeAtlas for future 
studies.

Module 4. Phenotype‑associated feature discovery
OmicsOne provides three sub-modules for phenotype-
associated feature discovery, including differential 
expression analysis, dimensionality reduction (also called 
decomposition), and feature clustering.

Differential expression analysis is a method delineat-
ing altered expression profiles of features, such as genes, 
proteins, and PTMs, which offers the greatest insight into 
aberrant biology in comparative studies (e.g., Tumor vs. 
Non-tumor). The algorithms of hypothesis tests (e.g., 
t-test and Wilcoxon) implemented in OmicsOne can 
identify the significant, differentially expressed features, 
leveraging multiple statistical tests for paired or inde-
pendent groups. The student t-test is the most commonly 
used statistical hypothesis test in which the test statistic 
follows a Student’s t-distribution. Wilcoxon rank-sum 
test is a non-parametric statistical hypothesis test used 
to compare the locations of two independent popula-
tions respectively [41]. For dependent groups, OmicsOne 
supports the corresponding paired t-test and Wilcoxon 
signed-rank test for the comparison. The results can 
be directly visualized in the interactive volcano plot for 
exploring all the features involved in the tests. Under the 
default settings, OmicsOne reports the features as sig-
nificantly altered features if there are more than 1.5 fold 
change and a less than 0.01 adjusted p-value (adjusted by 
Benjamini–Hochberg Procedure [42]) between the two 
compared groups. The intermediate testing result will 
be stored as a.csv file and provides candidate features for 
regression and enrichment analysis.

The dimensionality reduction method is a valuable and 
common approach to classify samples based on the most 
prominent factors driving different phenotypes without 
prior knowledge, especially for samples with thousands 
of features. Among a series of dimensionality reduction 
methods, Principal component analysis (PCA) [43] is one 
of the most widespread methods implemented in Omic-
sOne supported by Python package: Scikit-learn [35], to 
separate samples and identify the signature gene groups 
associated with the corresponding sample groups. The 
top 10 most prominent features can be visualized in each 
principal component. The most prominent features 
(default is 100) based on the contribution score were 
selected for phenotype association analysis. The contri-
bution score is defined as 

∑n
i=1

VRi ∗
abs(V ij)∑m
j=1

abs(Vij)
 , where 

m features are decomposed by n principal components 
(PCs), VRi is the explained variance ratio of PCi , Vij is the 
variance of feature j contributes to PCi.

Feature clustering is based on the hierarchical clus-
tering supported by Python package Scipy [33] to find 
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gene sets sharing similar alteration patterns in differ-
ent phenotypes. The expression values of each feature 
were z-score transformed crossing samples before 
clustering. User can define the cluster number. The 
clustered gene sets respective to each phenotype are 
exported for the following analysis.

Module 5. Correlation and regression model analysis 
for phenotype association analysis on individual features
OmicsOne provides phenotype association analysis for 
individual features. The features involved in the gene 
sets obtained from the differential expression analysis, 
dimensionality reduction, and feature clustering meth-
ods can be investigated individually for phenotype asso-
ciation. The correlation analysis and logistic regression 
analysis are provided for individual features associated 
with categorical phenotypes. The features having a  cor-
relation p-value < 0.05 are considered as phenotype-asso-
ciated features. The logistic regression model applied on 
the phenotype and feature expression is helpful to justify 
if an individual feature can be considered as a potential 
indicator for the phenotype prediction.

Module 6 enrichment analysis for phenotype association 
analysis on interested feature sets
The gene sets can be further investigated by the subse-
quent enrichment analysis, over-representation analy-
sis (ORA) using GSEApy [36–38] to discover pathways 
enriched behind genes associated with different phe-
notype states. GSEApy is a python implementation for 
gene set enrichment analysis (GSEA) and wrapper for 
Enrichr [36–38]. OmicsOne can automatically recall 
functions of GSEApy to do enrichment analysis on the 
selected significant features from the upstream analy-
sis to reveal the pathways and biological functions 
involved by these features.

Interactive data visualization of results
OmicsOne reports intermediate and finalized results 
in tables (.csv or.txt) and the corresponding interactive 
figures for all data analysis. The interactive figures are 
generated using Plotly in Dash framework for direct 

checking. OmicsOne automatically generates interme-
diate tables in.csv or.txt (Tab-separated) file for phe-
notype association results for each step of processing.

Results
The public proteomic data sets of high-grade serous ovar-
ian carcinoma (HGSOC) [44] and lung squamous cell 
carcinoma (LSCC) [45] were applied to demonstrate the 
functions of OmicsOne. The clinical information table 
of phenotypes was exported to ‘wide’ format files (sup-
port tab-separated.txt file or Excel file), in which sample 
names are the row indices, and phenotype names are col-
umn labels. The tag of ‘(Categorical)’ or ‘(Numerical)’ was 
added in each column label of phenotype for OmicsOne 
to recognize the data types of phenotypes.

OmicsOne was firstly applied on the public proteomic 
and glycoproteomic data set in the Additional tables of 
HGSOC [44] to demonstrate the functions. The results 
are shown in the Additional file 2: Table S1 for proteomic 
data analysis and Additional file  2: Table  S2 for glyco-
proteomic data analysis. The phenotype table contains 
106 samples (83 tumors and 23 non-tumors from nor-
mal fallopian tubes) associated with 9 classes of pheno-
types (such as pathological status, tumor cellularity, and 
tumor grade.) and 3 sample clusters information. The 
sample clustering results were treated as categorical phe-
notypes in this study. The characterization of phenotype 
pathological status of the tumor and non-tumor samples 
was shown in Fig. 2A to demonstrate module 1 of phe-
notype profiling. The categorical phenotypes were auto-
matically converted to numerical phenotypes to perform 
correlation analysis, as shown in Fig. 2B. We found that 
the Tumor_Stage_Ovary_FICO is positively correlated to 
the Tumor_Grade score (0.4) as expected. The phenotype 
correlation table also reveals other phenotype depend-
ency information we may need to consider in the follow-
ing investigation.

This investigation involved two expression matrices of 
protein and intact glycopeptides, including 5916 proteins 
and 365 intact glycopeptides, respectively. In this study, 
we regarded proteins or intact glycopeptides as features 
describing the samples. These features described each 
sample in a high-dimensional space. Although Omic-
sOne provides the preprocessing functions in module 2 
of data preprocessing and quality control, it also accepts 

(See figure on next page.)
Fig. 2  The software operation process (including phenotype profiling, processing, data quality evaluation, and database annotation) taking the 
proteome and glycoproteome data of HGSOC as an example. A Phenotype profiling by interactive characterization of the population in different 
phenotypes. B Phenotype profiling by phenotype correlation for revealing dependencies among different phenotypes. C Box plots of expression 
values of all normalized samples in the proteome data set of HGSOC. D Data quality evaluation by correlation of QC samples in the proteome data 
set of HGSOC. E Data quality evaluation by a distribution of coefficient of variant (CV) values of features in three samples in the proteome data 
set of HGSOC. F Table of feature details of intact glycopeptide identified in the glycoproteome data set of HGSOC associated with linkage to the 
knowledge database of N-GlycositeAtlas
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Fig. 2  (See legend on previous page.)
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data preprocessed using different preprocessing methods 
outside. The expression matrices of protein and intact 
glycopeptides have been log2-transformed, normalized, 
and have no missing values. The expression distribution 
in each sample is shown in Fig.  2C. The quality control 
module calculates the correlation of samples and coeffi-
cient of variant of features crossing samples to evaluate 
the variances of samples. The protein expression matrix 
of three samples (‘SPL 001’,’SPL 003’, and ‘SPL 006’) from 
sample cluster 1 were selected to demonstrate the func-
tions. As shown in Fig. 2D and E, we observed that the 
average correlation is 0.67 and median CV is 0.16, dem-
onstrating that the evaluation procedure can provide 
valid information for quality control. In module 3 of 
knowledge database annotation, two knowledge data-
bases, UniProtKB [39] and N-Glycositeatlas [40], were 
provided to annotate the identifications of proteins and 
intact glycopeptides. The annotation table supports 
quick query of target features, linkage to the database 
for further knowledge discovery, and feature selection 
for the following phenotype-feature association analysis 
(Fig. 2F).

In the module 4 of phenotype-associated feature dis-
covery, we implemented three functions: differential 
expression analysis, dimensionality reduction, and fea-
ture clustering. The purpose of this module is to find 
individual features or feature sets relevant to specific 
phenotypes. There are 47 significantly up-regulated and 
94 down-regulated intact N-linked glycopeptides were 
discovered in tumor samples compared with non-tumor 
samples using Wilcoxon rank-sum tests and consider-
ing Benjamini-Hochberg (BH) adjusted p-value < 0.01 
and fold change > 1.5 (Fig. 3A). The box plot of individ-
ual feature HYOU1_869_NATLAEQAK_1_869_N2H9 
in different phenotypes of tumor and non-tumor sam-
ples was visualized as shown in Fig. 3B. In the section 
of dimensionality reduction, OmicsOne showed that 
the tumor and non-tumor samples were basically clas-
sified using their protein expression data (Fig. 3C) and 
listed the PCs sorted descending by their explained 
variance ratio as well as the top 10 most prominent 
features contributed to the PCs (Fig.  3D). In the fea-
ture clustering section, users can intuitively view the 
effect of features clustered under different phenotypes 
(Fig.  3E) and select the suitable cluster number to get 

feature sets for the following enrichment analysis to 
find the pathways behind these clusters of features. 
After this procedure, we can collect interesting features 
from the three upstream analysis methods, including 
up-or down-regulated features in differential expres-
sion analysis, top contributed features in PCs to explain 
the sample variances, and clustered feature sets rel-
evant to phenotypes.

OmicsOne provides the functional module of correla-
tion and regression model analysis (module 5) for the 
investigation of phenotype and individual feature asso-
ciation. As shown in Fig. 4A, we found that the protein 
HNRNPU is the most positively correlated with the 
pathological status of Tumor (Fig.  4A), and the logis-
tic regression result showed that the area under the 
receiver operating characteristic curve (ROC) is 0.98 
(Fig. 4B). The module 6 of enrichment analysis provides 
an over-representation method for discovering path-
ways enriched by the interesting gene sets. For example, 
the lysosome pathway is enriched in genes of the sig-
nificantly up-regulated intact glycopeptides identified 
in the differential expression analysis section (Figs. 3A 
and 4C). This observation is consistent with the result 
in the previous publication [44].

OmicsOne was also applied on the proteome data 
set from LSCC to confirm its performance [44]. The 
clinical information table and proteome expression 
able were extracted from the original Additional file 2: 
Table  S1, Additional file  4: Table  S3 respectively. The 
PCA result (Additional file 1: Fig. S1A) was consistent 
with the original observation, in which the Tumor and 
NAT samples were separated clearly [44]. The differ-
ential expression analysis of the 99 paired Tumor and 
NAT samples was executed in OmicsOne using the 
nearly same settings according to the method section in 
the publication of LSCC to find the significant tumor-
associated proteins (FDR < 0.01 and fold change > 2). 
The result was also consistent with the original obser-
vation (Additional file  1: Fig. S1B). We applied two 
databases of Gene Ontology (GO) biological process 
(BP) (v.2021) [46] and MSigDB_HallMark (v.2020) [36] 
for the enrichment analysis. We consistently observed 
the pathways related to Cell Proliferation and DNA 
Repair enriched in the significantly up-regulated pro-
teins in tumors, while the pathways related to Cell 

Fig. 3  The phenotype-associated feature discovery procedures (including differential expression analysis, Dimensionality reduction, and feature 
clustering). A Interactive volcano plot of the result of differential expression analysis using hypothesis tests and multiple tests corrections applied 
on the glycoproteome data of HGSOC. B Interactive box plot for each feature (glycopeptide) expressed in different phenotypes (e.g., Tumor vs. 
Non-Tumor samples) in the glycoproteome data set of HGSOC. C Dimensionality reduction using principal component analysis (PCA) for most 
variant features in the proteome data set of HGSOC. D Variance ratio values of top 10 principal components (PCs) used in the PCA model applied on 
the proteome data set of HGSOC. The top 10 features contributed to each PC are provided in the hover data information. E Clustering analysis for 
features identified in the proteome data set of HGSOC associated with the phenotype of pathological status (Tumor and Non-tumor)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)



Page 9 of 12Zhang et al. Clinical Proteomics           (2021) 18:29 	

Adhesion and Acute Immune Response enriched in the 
significantly down-regulated proteins in tumors (Addi-
tional file 4: Table S3).

Discussion
OmicsOne is an efficient automated tool to associate 
the alteration of features with phenotypes. The soft-
ware uses empirical settings to build a robust working 
pipeline for standard association analyses in ‘one-click’ 
mode and allows the interactive manipulation for tun-
ing the analysis to fit the customized requirement. The 
‘one-click’ mode can speed up the discovery of inter-
esting features and feature sets and the following phe-
notype association analysis. However, we still strongly 
suggest that users carefully investigate each module’s 

settings and results and not use OmicsOne as a black 
box. Thus, we developed a webpage-based dashboard 
in OmicsOne, which integrates interactive data visu-
alization of results and the corresponding parameter 
settings to make the analysis clearer and more efficient 
to validate. Users can monitor the results of each mod-
ule in real-time during the running of the whole data 
analysis.

OmicsOne supports phenotype profiling, knowl-
edge annotation, and intact glycopeptide analysis. It 
provides a convenient way to associate intact glyco-
peptide to clinical phenotypes (Fig. 3A and B). The lit-
erature information of the intact glycopeptide can be 
easily accessed via the linkage in the annotation table. 
OmicsOne also provides intuitive and interactive data 

Fig. 4  The modules of phenotype association analysis, including phenotype associations with individual features and phenotype association with 
enriched pathways, applied on the proteome and glycoproteome data sets of HGSOC. A Correlation between phenotype ‘Tumor’ of pathological 
status and the protein expression of gene HNRNPU in all samples using the proteome data set of HGSOC. B Receiver operating characteristic (ROC) 
curve for regression model between Pathological Status (Tumor) ~ protein expression (HNRNPU). C The enriched KEGG (2016) pathways identified 
by Over-representation analysis (ORA) on the gene list of significantly up-regulated glycopeptides
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visualization for the analysis results. Users can directly 
select the interesting data points in the figure to obtain 
detailed information for further investigation. In this 
demonstration investigation, we reported two obser-
vations in the protein and glycopeptide data sets of 
HGSOC. In the protein data set, the protein HNRNPU 
is the most positively correlated with the pathological 
status of Tumor (Fig.  4A), and the corresponding area 
under the ROC curve (AUC) score is 0.98 using a logis-
tic regression model for tumor prediction. The median 
fold change of HNRNPU in protein expression is 1.67 
and adjusted p-value < 0.01 in the differential expres-
sion analysis result of comparing tumor and non-tumor 
samples. These tests can be efficiently accomplished in 
OmicsOne in minutes and suggest that HNRNPU may 
be a potential biomarker for HGSOC, supported by 
the recent studies [44, 47]. Moreover, we observed a 
glycoform of NATLAEQAK with oligomannose glycan 
N2H9, of which the gene HYOU1 was recently reported 
as a promotor for cell growth and metastasis via acti-
vating PI3K/AKT signaling in epithelial ovarian cancer 
and predicts poor prognosis [48]. It would be interest-
ing to investigate the role of glycosylation in this pro-
motion mechanism.

The performance of OmicsOne was further dem-
onstrated by the application on the proteome data of 
LSCC. The results of PCA and differential expression 
analysis for the comparison between Tumor and NAT 
samples (Additional file 1: Fig. S1A and S1B) confirmed 
the reproducibility of the previous observations. Omic-
sOne also provided more details of the analysis results. 
The enriched pathways in the tumor-associated proteins 
(Additional file 4: Table S3) showed classical histological 
features, including the upregulation of Oxidative phos-
phorylation and Glycolysis related pathways and down-
regulation of immune response. The enriched EMT 
pathway in the new subtype ‘EMT-E’ reported in the 
original publication [45] was also found altered in the 
comparison between Tumor and NAT, which suggested 
that the altered proteins in the EMT pathway could be 
further investigated as potential biomarkers for diagnosis 
as well as prognosis.

Conclusion
OmicsOne integrated multiple essential modules for 
phenotype association analysis and provided a compre-
hensive analysis to discover interesting phenotype-asso-
ciated features (e.g., genes, proteins, or peptides modified 
by PTMs) in minutes. The data analysis results are dis-
played in an interactive dashboard in real-time. We dem-
onstrated the performance of OmicsOne using the 
published data sets of HGSOC and LSCC in this study 

and believe it will be an efficient bioinformatics solu-
tion for investigating and evaluating phenotype associa-
tions with individual features or interested feature sets to 
understand aberrant biological processes.
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