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Abstract 

Background:  Cerebrospinal fluid (CSF) is an important biofluid for biomarkers of neurodegenerative diseases such as 
Alzheimer’s disease (AD). By employing tandem mass tag (TMT) proteomics, thousands of proteins can be quantified 
simultaneously in large cohorts, making it a powerful tool for biomarker discovery. However, TMT proteomics in CSF 
is associated with analytical challenges regarding sample preparation and data processing. In this study we address 
those challenges ranging from data normalization over sample preparation to sample analysis.

Method:  Using liquid chromatography coupled to mass-spectrometry (LC–MS), we analyzed TMT multiplex samples 
consisting of either identical or individual CSF samples, evaluated quantification accuracy and tested the performance 
of different data normalization approaches. We examined MS2 and MS3 acquisition strategies regarding accuracy of 
quantification and performed a comparative evaluation of filter-assisted sample preparation (FASP) and an in-solution 
protocol. Finally, four normalization approaches (median, quantile, Total Peptide Amount, TAMPOR) were applied to 
the previously published European Medical Information Framework Alzheimer’s Disease Multimodal Biomarker Dis-
covery (EMIF-AD MBD) dataset.

Results:  The correlation of measured TMT reporter ratios with spiked-in standard peptide amounts was significantly 
lower for TMT multiplexes composed of individual CSF samples compared with those composed of aliquots of a sin-
gle CSF pool, demonstrating that the heterogeneous CSF sample composition influences TMT quantitation. Compari-
son of TMT reporter normalization methods showed that the correlation could be improved by applying median- and 
quantile-based normalization. The slope was improved by acquiring data in MS3 mode, albeit at the expense of a 29% 
decrease in the number of identified proteins. FASP and in-solution sample preparation of CSF samples showed a 73% 
overlap in identified proteins. Finally, using optimized data normalization, we present a list of 64 biomarker candidates 
(clinical AD vs. controls, p < 0.01) identified in the EMIF-AD cohort.
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Background
Cerebrospinal fluid (CSF) is the primary biofluid for bio-
markers of central nervous system diseases. Due to its 
proximity to the brain, many neuropathological processes 
are mirrored in the protein composition of the CSF [1]. 
In Alzheimer’s disease (AD) research, the CSF biomark-
ers amyloid β (a marker of amyloid plaque pathology), 
and the tau protein (a marker of axonal destabilization) 
with its phosphorylated forms (markers of increased tau 
phosphorylation, which are related to neurofibrillary tan-
gle formation) have played central roles for our current 
understanding of the pathological mechanisms involved 
in the disease [2]. They have aided drug development and 
are gaining importance as a support in diagnostics and 
as indicators of disease progression [3]. Identification of 
more CSF biomarkers through mass spectrometry (MS)-
based proteomics is likely to facilitate the transition from 
symptomology-based definitions of neurodegenerative 
diseases to a more precise one defined by specific pathol-
ogies that can be determined by measuring panels of bio-
markers. This may assist the development of treatments, 
help identify disease subtypes, and ensure that patients 
receive the medication suitable to treat their specific 
pathologies.

Precise protein quantitation improves the ability to 
identify biomarkers. The tandem mass tag (TMT) tech-
nique is one of the most frequently used techniques for 
quantifying relative protein abundances in proteomic 
studies [4]. In a TMT experiment, protein samples sub-
jected to tryptic digestion are labeled with an amino-
reactive reagent. TMT reagents exist in different isobaric 
forms, each differing in how the stable isotopes 13C and 
15N are distributed between the reporter and balance 
group of the reagent [5]. TMT-labeled study samples 
are combined into multiplexes that are analyzed by liq-
uid chromatography mass-spectrometry (LC–MS) in the 
data-dependent mode using high-resolution MS. Upon 
fragmentation of the precursor, the reporter part of the 
label is released and detected in the fragment ion spec-
trum. As reporter ions from different TMT reagents 
have distinct m/z values, they are detected as separate 
peaks, the relative intensities of which correspond to 
the relative molar concentration of the fragmented pep-
tide ion across the study samples contained in the TMT 

multiplex sample [6]. To date, the TMTpro technique 
enables multiplexing of up to 18 samples that can be ana-
lyzed simultaneously in one LC–MS run [7]. Both the 
high multiplexing capacity and the quantitation accuracy 
make TMT a powerful tool in large clinical proteomic 
studies [8].

However, there are also challenges associated with 
TMT studies in CSF. One is the large biological variability 
of CSF compared to e.g., cultured cells or tissue extracts 
[9]. The total protein concentration in CSF varies widely 
among individuals, ranging between 0.15 and 0.6 mg/mL 
[10, 11] as a result of a multitude of factors including CSF 
production and clearance rates, blood–brain barrier per-
meability and venous pressure [12]. Proteomic studies in 
CSF have also revealed considerable variation in the con-
centrations of numerous proteins between individuals 
[13, 14]. This raises concerns that differences in the over-
all protein composition may affect sample preparation 
yield, thereby distorting the measurement of individual 
proteins.

Sample preparation, including protein solubilisation, 
tryptic digestion, and TMT labeling may influence the 
results strongly, with respect both to identified proteins 
and to quantitation variability. If TMT labeling is per-
formed in neat CSF, matrix effects caused by sample 
components may potentially interfere with the labeling 
reaction in a sample-dependent manner. Such matrix 
effects can be largely avoided using filter-assisted sample 
preparation (FASP) [15]. While also permitting the use of 
strong protein solubilizing agents, which may allow iden-
tification of proteins not accessible to tryptic digestion in 
solution, FASP comes with the drawback of being more 
laborious and time-consuming, which hampers its use in 
large-scale studies.

It is important to achieve near complete labeling of 
peptides, as incomplete labeling leads to decreased 
detection sensitivity. Furthermore, under reaction con-
ditions with TMT reagent deficiency, the sample com-
position may conceivably affect the degree of labeling, 
thereby skewing measurements. On the other hand, in 
large-scale studies it is desirable to minimize the amount 
of the costly TMT reagent. Cost-efficient TMT labeling 
has been reported for purified protein samples and may 
possibly also be achievable in CSF [16].

Conclusion:  We have evaluated several analytical aspects of TMT proteomics in CSF. The results of our study pro-
vide practical guidelines to improve the accuracy of quantification and aid in the design of sample preparation and 
analytical protocol. The AD biomarker list extracted from the EMIF-AD cohort can provide a valuable basis for future 
biomarker studies and help elucidate pathogenic mechanisms in AD.

Keywords:  Tandem mass tag, Cerebrospinal fluid, Normalization, Alzheimer’s disease, Biomarkers, Sample 
preparation, Labeling efficiency, Mass spectrometry
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Quantitation accuracy of TMT suffers from a phe-
nomenon referred to as ratio compression: distinct TMT 
labeled peptide ions with close precursor m/z values are 
co-isolated and co-fragmented in MS2, skewing reporter 
ion intensities towards a 1:1 ratio [17]. To circumvent 
this, a method known as synchronous precursor selec-
tion (SPS) MultiNotch MS3 was developed in which 
multiple carefully selected MS2 fragment ions, contain-
ing the TMT label, are subjected to an additional frag-
mentation step [18]. While improving ratio distortion, 
this method comes at the expense of detection sensitivity 
[18]. In CSF, in which potential biomarkers are likely to 
be low-abundant, the gain in accuracy must be critically 
weighed against the decrease in detection sensitivity.

Another important aspect in TMT studies is data 
normalization of the obtained protein abundance val-
ues. Technical variation in the yield of sample prepara-
tion steps prior to TMT labeling, and in the labeling 
reaction itself, can introduce systematic differences in 
protein amount and composition between samples. Fur-
thermore, high biological variation among CSF samples 
may obscure relevant protein changes. To correct for dif-
ferential influences on the samples and achieve higher 
comparability, some form of normalization is typically 
applied to the data. Most data normalization techniques 
assume that the overall protein composition is similar 
across study samples. In the light of the high biological 
variability of CSF, this assumption may not hold true for 
CSF demanding a careful evaluation of different normali-
zation approaches.

In this study we set out to systematically address the 
challenges associated with TMT studies in CSF. FASP 
was compared with a protocol based on in-solution tryp-
tic digestion and TMT labeling of neat CSF, with respect 
to identified proteins and variability of quantification. 
For the latter protocol, we also determined the minimal 
required amount of TMT reagent. Using both pooled 
CSF and individual CSF samples, we evaluated the effect 
of previously reported normalization methods, including 
normalization to spiked-in external protein, Total Pep-
tide Amount normalization, median normalization, and 
quantile normalization. Finally, we applied the normali-
zation found to be optimal, to a recently published data 
set from the European Medical Information Framework 
(EMIF)-AD cohort, resulting in the identification of AD 
biomarker candidates [19].

Materials and methods
Materials
Human CSF individual (15 in total) as well as pool sam-
ples were obtained from the Neurochemistry laboratory 
at Sahlgrenska University hospital, Mölndal. AD core 
biomarkers were measured using a chemiluminescent 

enzyme-immunoassay (CLEIA) on the LUMIPULSE® 
G1200 platform (Fujirebio Europe). Samples were bio-
chemically classified as AD based on the following cut-off 
values: Aβ1–42 < 620 pg/mL, phospho(p)-tau 181 > 61 pg/
mL and total(t)-tau > 440 pg/mL.

Internal calibrator (QCAL) was prepared by dissolving 
25  µg vials (Sigma-Aldrich) in 480  µL 20% acetonitrile 
(ACN). Aliquots of 10 µL were lyophilized with a Speed-
Vac vacuum concentrator yielding a peptide amount of 
10 pmol/aliquot.

Reference peptide mix (MassPrep Digestion Standard 
Mixture 1, Waters) consists of the following proteins: 
yeast alcohol dehydrogenase (ADH, SwissProt P00330), 
glycogen phosphorylase b (GPb, SwissProt P00489), 
yeast enolase (SwissProt P00924), bovine serum albumin 
(BSA, SwissProt P02769) in molar ratios 1:0.92:0.36:0.62 
(± 5–10%). Reference peptide mix (pepmix) vials were 
dissolved in 1  mL 0.1% formic acid (FA) and vortexed 
for 1  h at RT. Aliquots of 100  µL were lyophilized with 
a SpeedVac vacuum concentrator (final amount: 5 pmol), 
and reconstituted in 2.5  mL 0.1% trifluoroacetic acid 
(TFA), 50 µL aliquots were made (100  fmol) and stored 
at − 20 °C.

In‑solution CSF sample preparation
In-solution digestion was performed as previously 
described [20]. Briefly, 50  µL CSF aliquots were spiked 
with QCAL internal calibrator (50 fmol) and pepmix (0, 
10, 15, 30 fmol). Samples were reduced by adding 19.5 µL 
24.2  mM Tris(2-carboxyethyl)phosphine solution and 
heated at 55 °C for 1 h. For alkylation, 2.4 µL freshly pre-
pared 400 mM iodoacetamide (IAA) were added to each 
sample followed by vortexing and a 30 min incubation in 
the dark. Trypsin (20 µg per vial; Promega) was dissolved 
in 100 µL of resuspension buffer (Promega), and an ali-
quot containing 2.6 µg of the enzyme was added to each 
sample. Samples were digested overnight at 37 °C.

Filter‑assisted sample preparation (FASP) of CSF
First, 50 µL CSF aliquots were spiked with 25 µL pepmix 
in 50  mM of triethylammonium bicarbonate (TEAB); 
8  µL of sodium dodecyl sulfate (SDS) were added to 
each sample to reach a final concentration of 2%. Sam-
ples were vortexed and subsequently heated at 90  °C 
for 5  min. Protein reduction was performed by adding 
4.4  µL dithiothreitol (DTT) to each sample and incu-
bating at 60  °C for 30 min. The following centrifugation 
steps were performed at 12,000×g for 15 min. Filter units 
(30 kDa, PALL Life Science) were equilibrated by apply-
ing 200  µL 8  M Urea with subsequent centrifugation. 
Each sample was diluted 1:4 with 8  M Urea and added 
to the filter unit. Samples were spun down and SDS was 
removed by washing 3 times with 200  µL 8  M Urea. 
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Having washed the filter unit with digestion buffer (0.5% 
sodium deoxycholate (SDC), 50  mM TEAB), samples 
were alkylated by adding 100  µL 18  mM IAA in diges-
tion buffer, vortexed and incubated for 20  min in the 
dark. Following the removal of alkylation buffer and fil-
ter equilibration, trypsin dissolved in digestion buffer was 
added at enzyme:protein ration 1:60 (w/w). Samples were 
digested overnight at 37 °C and spun down the following 
day for peptide collection.

TMT labeling and peptide desalting
Prior to labeling, sample pH was verified to be around 8. 
TMTpro 16plex reagents were equilibrated to room tem-
perature and dissolved in 20  µL 100% ACN. Vials were 
thoroughly vortexed, spun down and the corresponding 
TMT volume was transferred to the sample (100% TMT 
volume: 20 µL, 50% TMT volume: 10 µL, 20% TMT vol-
ume: 4  µL). Samples were then incubated for 1  h with 
constant agitation (200  rpm). The labeling reaction was 
quenched by adding 5  µL of 5% hydroxylamine (HA) 
to the sample and incubating for 30  min. Samples were 
pooled into corresponding TMT sets and diluted with 
0.1% TFA to decrease the ACN concentration to < 3%. 
One tenth of the sample volume of 0.5 M HCl was then 
added to acidify the samples. Desalting was performed 
by solid phase extraction (SPE) employing reversed-
phase C18 cartridges (Sep-Pak C18 light) with a vacuum 
manifold. Cartridges were first washed with 1000  µL 
0.1% TFA, 80% ACN and then equilibrated by applying 
1000 µL 0.1% TFA twice. TMT sample sets were loaded 
onto the column and the cartridge was again washed 
twice with 1000  µL 0.1% TFA. Peptides were finally 
eluted with 1000 µL 0.1% TFA, split into 2–4 aliquots and 
lyophilized employing a SpeedVac vacuum concentrator.

Offline high‑pH reverse phase HPLC sample fractionation
Offline high-pH HPLC sample fractionation was per-
formed using an UltiMate™ 3000 Nano LC system. 
One sample aliquot was reconstituted in 22 µL 2.5 mM 
NH4OH and 20  µL were loaded onto an XBridge BEH 
C18 column (pore size: 130 Å, inner diameter: 4.6 mm) 
for separation. Peptides were eluted over a 65  min gra-
dient at a flow rate of 100 µL/min with Buffer B ranging 
from 1 to 45% and Buffer C = 10% (Buffer A: H2O, Buffer 
B: 84% ACN, Buffer C: 25 mM NH4OH). Fractions were 
collected with 1.0  min interval and concatenated to 24 
fractions by circling over two rows in a 96-well microti-
ter plate. The column was consequently cleaned at 90% 
B, 10% C for 10 min and equilibrated at 1% B, 10% C for 
10  min. Eluates were lyophilized by vacuum centrifuga-
tion and stored at − 20 °C until LC–MS analysis.

Liquid chromatography–mass spectrometry (LC–MS)
Samples were analysed with a nano-LC (Ultimate RSLC 
Nano, Thermo Scientific) equipped with a C18 trap col-
umn (PepMap Acclaim 300 µm mm * 5 mm, Thermo Sci-
entific), and a C18 separation column (PepMap Acclaim 
75 µm * 500 mm, Thermo Scientific), coupled to a Fusion 
Tribrid Orbitrap mass spectrometer (Thermo Scientific), 
fitted with an Easy Spray ion source. Loading buffer was 
0.05% TFA; Buffer A was 0.1% FA; and Buffer B was 84% 
ACN, 0.1% FA. The following gradient was used: 0 min, B 
0%; 50 min, B 55%; 60 min, B 100%. The mass spectrom-
eter was operated in the positive ion mode. A full Orbit-
rap MS scan (R = 120  k, AGC target = Standard, max 
injection time = 50 ms) was followed by data dependent 
Orbitrap MS/MS scans (isolation window = 1.5, activa-
tion type = HCD, R = 50  k, AGC target = 300%, max. 
injection time = 90 ms) with 3 s cycle time. For SPS-MS3, 
the following parameters were used: a full Orbitrap MS 
scan (R = 120  k, AGC target = standard, max injection 
time = 50  ms) was acquired, followed by Ion Trap MS/
MS scans (isolation window = 0.7, activation type = CID, 
AGC target = Standard, max. injection time = 50 ms) and 
Orbitrap MS3 scans (MS2 isolation window (m/z) = 2, 
number of SPS precursors: 5, Activation type = HCD, 
AGC target = 200%, max. injection time = 105 ms).

Data processing and protein quantification
Data analysis was performed with Proteome Discoverer 
Version 2.5.0.400 (Thermo Scientific). Reporter ion inte-
gration was carried out with 20 ppm tolerance and most 
confident centroid was set as integration method. Pep-
tides were identified using Sequest™ search engine with 
UniProtKB Swiss-Prot (TaxID = 9606, Homo sapiens) 
as database. The following search settings were applied: 
precursor Δm tolerance = 10  ppm, fragment Δm toler-
ance = 0.02 Da (MS2 mode), 0.6 Da (MS3 mode), missed 
cleavages = 2, fixed modifications = carbamidomethyl, 
TMTpro (peptide N-terminus, K residues). For peptide 
scoring, Percolator was employed with an identification 
threshold of 1% false discovery rate (FDR). Peptide to 
protein summarization was performed as implemented 
by Proteome Discoverer [21], adapted from McAlister 
et  al. [18]. Protein abundances are therein calculated as 
simple summation of their associated peptide group 
abundances. Peptide groups were considered for quan-
tification based on their uniqueness (unique peptides) 
and in accordance with the principle of parsimony (razor 
peptides). No imputation of missing values was per-
formed. For evaluation of TMT labeling efficiency, TMT-
pro was set as variable modification (peptide N-terminus, 
K residues).
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Data normalization methods
As multiple formulas will be presented in the following, 
notations are introduced at this point:

•	 xij denotes the peptide abundance of peptide j in 
sample i while x̃ij indicates the corresponding nor-
malized peptide abundance.

•	 Xij is the protein abundance ratio of protein j in sam-
ple i and Xĩj represents the corresponding normalized 
protein abundance ratio. Protein ratios were calcu-
lated based on median protein intensity across all 
TMT channels in the case of the individual and pool 
CSF data set. In the case of the EMIF-AD cohort, 
protein ratios were calculated based on the corre-
sponding global internal standard (GIS) channel.

•	 N corresponds to the maximum number of peptides 
or proteins in sample i.

•	 M indicates the maximum number of samples within 
a TMT set.

Total peptide amount normalization
Normalization to total peptide amount aims at equalizing 
peptide abundances across all TMT channels and cor-
recting for differences in sample loading. In the present 
study, normalization to total peptide amount was per-
formed as implemented in Proteome Discoverer accord-
ing to the following formula:

External spike‑in normalization
External spike-in normalization is targeted at correcting 
for unwanted technical variation introduced throughout 
the experiment. Therefore, an external reference stand-
ard is spiked into each sample at a known concentration. 
Here, QCAL peptide mix (Sigma Aldrich), designed as 
universal MS standard, was employed as reference. The 
normalization was performed in Proteome Discoverer. 
Reference protein abundance is calculated for each sam-
ple determining the maximum abundance in all samples. 
The normalization factor results as the factor of the max-
imum reference protein abundance of all samples and the 
individual abundance of the corresponding sample:

x̃ij =

xij ∗ max
1≤i≥M

(

N
∑

j=1

xij

)

N
∑

j=1

xij

.

X̃ij =

Xij ∗ max
1≤i≥M

(

Xi,QCAL

)

Xi,QCAL
,

where Xi,QCAL denotes the QCAL protein abundance in 
sample i.

Median normalization
Median normalization is a global normalization method 
correcting for differential sample amounts in a robust 
manner. It centers the sample data to its corresponding 
median. First, median protein abundance ratio is cal-
culated for each sample. Next, each individual protein 
abundance in a channel is divided by its corresponding 
median.

Quantile normalization
Quantile normalization relies on the assumption that 
the global statistical distribution of protein abundances 
is similar across all samples. Following quantile nor-
malization, the quantiles of protein ratio distribution in 
each sample are adjusted to the average quantile values 
obtained over all samples [22]. The function normalize.
quantiles(), originally implemented for microarray data, 
was used in R [23]. The algorithm consists of the follow-
ing steps:

1.	 Sort each column (TMT channel) according to their 
corresponding protein abundances.

2.	 Calculate the means across rows (protein observa-
tion) of the sorted data array. Assign that mean to 
each corresponding row element.

3.	 Rearrange each column to have the original ordering.

TAMPOR
TAMPOR is a function originally implemented by Dam-
mer and colleagues [24]. It employs a median polish algo-
rithm based on Tukey’s median polish correcting for both 
abundance differences in samples and TMT batch effects. 
In addition to performing sample (TMT channel)-wise 
median centering it also performs row (protein)-wise 
median centering by calculating the grand median of GIS 
channels in a TMT study [25].

Statistical analysis
Statistical analysis of the EMIF-AD dataset comparing 
controls versus clinical AD was performed in R version 
R.4.1.2. For calculation of protein fold-change abun-
dances, data were log2-transformed following normaliza-
tion to satisfy the requirement of a normal distribution. 
Outliers of within-protein measurements were removed 
if they deviated more than 1.5 times the interquar-
tile range of the 25th and 75th percentile, respectively. 

X̃ij =
Xij

median(Xi)
.
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Unpaired Student’s t-test assuming unequal variance was 
performed to calculate significance levels and the result-
ing p-values were corrected by the method Benjamini 
and Hochberg (BH) [26]. An FDR of 1% was selected as 
cut-off.

Assessment of labeling efficiency
Labeling efficiency was calculated as follows [27]:

Gene ontology analysis
For gene ontology (GO) analysis, the online tool PAN-
THER v.14.0 was employed [28, 29]. A statistical over-
representation test of GO biological process terms was 
performed to evaluate whether genes mapping to our 
EMIF-AD biomarker candidate list were either over- or 
underrepresented [30]. As reference list, all identified 
proteins of the proteomic study of the EMIF-AD cohort 
was used. When conducting a statistical overrepresenta-
tion test for significantly increased proteins in AD, BH 
correction was performed (FDR < 5%). Due to the small 
number of significantly decreased proteins in the bio-
marker candidate list, no BH-correction was performed 
for the corresponding p-values.

Results
Evaluating variance within a TMT experiment
To evaluate both sources of variation in the in-solution 
TMT protocol and an optimal normalization strategy, 

LE[%] =

∑

peptide group IDs −
∑

peptide group IDs without TMT label
∑

peptide group IDs
∗ 100.

an experimental design comprised of two TMT sets was 
chosen (Fig.  1). Briefly, one pool CSF sample was split 
in 15 aliquots. Each aliquot was spiked with an equimo-
lar amount of a peptide mixture used for normalization 
(QCAL) and varying amounts (molar ratio 0:1:1.5:2:3) of 
a reference peptide mixture (pepmix) in triplicates. The 
samples were subsequently labeled and combined into 
the TMTpro 15-plex Set 1 (Fig.  1A). In the Set 2, CSF 

samples from 15 individuals (7 AD subjects and 8 con-
trols) were prepared in the same manner (Fig.  1B). The 
calibrator QCAL served as reference standard for nor-
malization to specific protein amount, hereafter referred 
to as QCAL normalization. Pepmix was used to analyze 
the performance of the normalization strategies and 
quantitation accuracy. Set 1 allowed us to determine the 
technical variation of the experiment, including sample 
preparation and MS analysis, while Set 2 mirrored the 
total variation of a real-life TMT experiment, made up of 
technical variation plus biological variation. Both AD and 
control samples were employed to portray more accu-
rately a heterogeneous study group.

In the first step, intra-experimental variation was ana-
lyzed by determining the coefficient of variation (CV) of 
all proteins common to both pool samples and individual 
samples. The technical CV of each protein, calculated 
based on Set 1, was plotted against its corresponding 
total CV, as obtained from the individual samples (Set 2). 

Fig. 1  Experimental design to evaluate technical and total variation as well as an optimal normalization approach for our in-solution based TMT 
protocol. A pool of CSF from numerous individuals, referred to as Set 1 (A) or individual CSF samples consisting of 7 AD and 8 control samples, 
referred to as Set 2 (B) were split in 15 aliquots. Internal calibrator MSQCAL was spiked into each aliquot at equimolar amounts (50 fmol), while 
pepmix was added in differing amounts in triplicates (0, 10, 15, 20, 30 fmol). Each aliquot was subsequently TMT-labeled, combined, and analyzed 
by LC–MS
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No normalization was performed. CVs were evaluated at 
protein level, as well as at the peptide level (Fig.  2). Set 
2 was divided into 2 aliquots, which were fractionated 
and independently analyzed via LC–MS. CVs from both 
runs are color-coded. Observations located left of the 
drawn line exhibit a lower technical CV than total CV, 
which applies to a great fraction of proteins and peptides, 
respectively. CVs were found to be largely independent 
of corresponding peptide and protein intensities (Addi-
tional file 2: Fig. S1). The data thus show that (i) the tech-
nical variation is comparatively small, with a median CV 
of appr. 10%, and that (ii) biological variation contributes 
substantially to the total variation we observe in TMT 
CSF experiments, even exceeding 200% for some pro-
teins and peptides. Also, off-line fractionation as well as 
LC–MS analysis do not seem to introduce considerable 
variation as the CVs of both independent runs show great 
overlap. Overall, the considerably low technical varia-
tion attests to the validity of the method, facilitating the 
detection of biological differences.

Comparison of normalization strategies using spiked‑in 
protein standards
Next, we applied four normalization strategies to Set 1 
and Set 2: (1) normalization to specific protein amount 
(QCAL normalization), (2) median normalization, (3) 
total peptide amount normalization and (4) quantile 
normalization. These normalization approaches were 

selected because they are relatively easy to implement 
and have shown promising results in previous studies 
[31, 32]. Especially median and quantile normaliza-
tion have proven to yield good results in a comparative 
study evaluating normalization approaches in TMT 
proteomics [32]. Notably, normalization was performed 
on the protein level and was targeted at removing intra-
experimental bias. Removal of inter-experimental bias 
(“batch effects”) will be further discussed towards the 
end of the paper.

Performance of the normalization approaches was 
evaluated by inspecting the TMT abundance ratios 
for three of the four proteins in pepmix (bovine serum 
albumin was excluded due to its extensive sequence 
overlap with human serum albumin): enolase, alcohol 
dehydrogenase (ADH) and glycogen phosphorylase 
b (GPb), versus their spike-in amount (Fig.  3A–J). In 
CSF pool samples (Set 1), only small differences were 
observed between any of the four normalization meth-
ods compared to the unnormalized data (Fig.  3A–E). 
For all proteins, the slope of the curve was slightly 
less than the expected trend (indicated by the dashed 
line in the plots), most likely owing to the phenom-
enon of ratio compression caused by co-isolation [18]. 
The similarity in performance between the methods is 
clearly visible when comparing the mean TMT ratios 
of all three proteins for each normalization approach as 
a function of spike-in amount (Fig.  3K), with quantile 

Fig. 2  Coefficient of variation (CV) of proteins (A) and peptides (B) common to both Set 1 and Set 2. The technical CV was calculated based on 
data obtained from the pool CSF set (Set 1), while the total CV was obtained from the individual CSF sample data (Set 2). Each dot represents a 
protein (A) or peptide (B) measurement, respectively. The diagonally drawn line marks the threshold at which the total CV equals the technical CV. 
Duplicates of the Set 2 LC–MS analysis are color-coded (turquoise and red)
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normalization differing slightly from the other methods 
and being closest to the expected trend.

While, against a homogeneous sample background, 
the effect of normalization was small, the abundance 
ratios in the dataset of the individual samples (Set 
2) did not match the expected linear trend as closely 
(Fig. 3F–J). Quantitation accuracy seems to suffer from 

the heterogeneous sample background and the abun-
dance ratios deviate from linearity, especially in the 
unnormalized dataset (Fig. 3F). The linearity of the cor-
relation was, however, improved to varying extents by 
normalizing the data. While QCAL normalization had 
little to no effect on the ratios, median and quantile 
normalization mitigate deviation from linearity greatly 

Fig. 3  Performance of selected normalization approaches applied to a pool CSF (Set 1) and individual CSF TMT set (Set 2), as evaluated by pepmix 
TMT ratios and cumulative CV distribution. Following normalization of the pool CSF set (A–E) and individual CSF set (F–J), pepmix TMT ratios at each 
specified spike-in amount were evaluated separately for all three proteins GPb (green), ADH (red) and enolase (blue). Error bars indicate standard 
deviation for triplicate measurements. The dotted trendline represents the theoretically expected linear trend of TMT ratios. K, L Summarized mean 
TMT ratios of all 3 proteins plotted vs. their corresponding spike-in amount for selected normalization approaches (red: no norm., green: QCAL 
norm., blue: median norm., yellow: Total Peptide Amount norm., brown: quantile norm) applied to the pool CSF sample set (K) and individual CSF 
sample set (L). M, N Cumulative fraction of proteins below a certain CV in the pool samples set (M) and individual samples set (N) before and after 
normalization
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(Fig. 3L). Normalization to total peptide amount as well 
as median and quantile normalization appeared to also 
improve the distortion towards the expected trend.

In addition, the cumulative fraction of all quantified 
proteins below a certain CV was analyzed for each nor-
malization approach applied to the pool sample dataset 
(Fig. 3M) and individual samples dataset (Fig. 3N). Nor-
malization of the pool samples dataset slightly decreased 
CVs, left-shifting the cumulative distribution curves. 
Again, all normalization approaches performed simi-
larly. Hypothesizing that, despite high biological vari-
ation between CSF samples, most proteins should not 
vary greatly among individuals, cumulative distribution 
curves should also be left-shifted following success-
ful normalization in Set 2. This is especially the case for 
median and quantile normalization which result in a 
noticeable decrease of protein CV.

Integrating the results, we thus conclude that (i) a 
heterogeneous sample background, such as the varying 
sample composition of CSF samples from different indi-
viduals, negatively affects quantitation accuracy, and that 
(ii) normalization can improve abundance ratios consid-
erably in biologically diverse TMT sets. The plots show 
that median and quantile normalization appear to be 

most successful in reducing overall CVs in Set 2, albeit 
quantile normalization may overcorrect the data as indi-
cated by TMT ratios dipping below the expected linear 
trend.

Encouraged by the clear difference in quantitation 
accuracy between pool and individual samples, we set 
out to determine the underlying reason. We hypoth-
esized that the observed deviation from linearity in the 
presence of a heterogeneous sample background may be 
attributable to co-isolation during precursor selection. In 
the TMT set comprised of individual CSF samples, TMT 
channel reporter ion intensities can be affected to vary-
ing extents by co-isolation. The effect is dependent on 
the presence and abundance of the co-isolating peptide 
in each respective TMT channel and can thus distort 
TMT ratios to differing degrees. Meanwhile, in a TMT 
set with a homogeneous sample background, co-isolated 
peptides are expected to contribute equally to each TMT 
channel, so that the linear trend can be retained. Due to 
varying peptide abundance distributions of individual 
CSF samples (Fig. 4B) as opposed to pooled CSF samples 
(Fig. 4C), differential effects may be quite pronounced.

Indeed, this is what could be observed when evaluat-
ing pepmix abundance ratios at different co-isolation 

Fig. 4  Influence of co-isolation on pepmix TMT ratios and peptide abundance distribution in both individual and pool CSF TMT sets. Mean pepmix 
TMT ratios were evaluated based on the extent of co-isolation in the corresponding peptide spectrum match. The data was plotted in a cumulative 
fashion displaying the mean TMT ratio of the fraction of pepmix data below the respective co-isolation threshold (A). Median-centered peptide 
abundance distribution for each TMT channel (sample) in (B) the TMT set comprised of individual samples and (C) the TMT set consisting of pool 
CSF samples
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thresholds. It is apparent that co-isolation negatively 
affects linearity in a heterogenous sample background 
(Fig.  4A). TMT ratios are not only progressively dis-
torted towards a 1:1 ratio but also deviate from linearity 
increasingly.

Comparison of MS2 and MS3 quantification accuracy
For comparison of MS2 and MS3 quantitation accuracy, 
Set 2 was analyzed in both MS2 mode and with SPS Mul-
tiNotch MS3 [18], consecutively. To assess the extent 
of ratio compression, TMT ratios of the spiked pepmix 
proteins were evaluated at each corresponding spike-in 
amount (Fig. 5). In the MS2 mode, the curves for all three 

proteins followed a linear trend quite closely (Fig.  5A). 
Fitting a linear regression to the data, the slope was lower 
than that of the expected trendline, which points to ratio 
compression.

In the MS3 mode, both ADH and GPb abundance 
ratios are closer to the expected ratio values than in MS2 
(Fig.  5B). As expected, MS3 can mitigate the effects of 
ratio compression observed in MS2. However, enolase 
exhibits heavily distorted TMT ratios, with only one 
peptide quantified. This occurred most likely because 
of a decreased detection sensitivity in MS3 and because 
enolase is less abundant in the pepmix compared to the 
other proteins. Mean abundance ratios of the proteins 
ADH and GPb, confidently quantified in both MS2 and 

Fig. 5  Measured TMT ratios of spiked pepmix proteins in MS2 and MS3 mode. Pepmix TMT ratios at each specified spike-in amount were evaluated 
separately for all three proteins P00489 (GPb, green), P00330 (ADH, red) and P00924 (enolase, blue) in MS2 (A) and MS3 (B) mode. Error bars indicate 
standard deviation for triplicate measurements. The dotted trendline represents the theoretically expected linear trend of TMT ratios. C Summarized 
mean TMT ratios of P00489 and P00330 plotted against their corresponding spike-in amount (unnormalized data). TMT ratios measured in MS2 
mode are colored in red and TMT ratios measured in MS3 mode are depicted in blue
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MS3 mode, were plotted against the corresponding 
spike-in amount (Fig. 5C). Directly comparing both anal-
ysis modes, ratio compression is indeed reduced in MS3. 
However, 1242 proteins could be identified in MS2 mode 
while only 886 proteins (71%) were detected with MS3. 
Both observations are in line with previous studies [33, 
34].

Evaluating the performance of sample preparation 
techniques
To assess the suitability of FASP as sample preparation 
technique for CSF, we compared it to the in-solution 
protocol. In FASP, the sample is loaded on a 30  kDa 
molecular cut-off filter, on which all reaction steps are 
performed, and reagents can be removed by centrifuga-
tion, while the proteins are retained on the filter. This 
permits usage of strong detergents potentially increasing 

the number of identified proteins and eliminates matrix 
effects.

We prepared CSF pool samples employing both in-
solution and FASP protocols in technical replicates of 
five, respectively. The replicates were labeled and sepa-
rately combined into two TMT sets (one FASP set, one 
in-solution set), which were fractionated and analyzed 
independently. A total of 5995 peptide groups were 
commonly identified in both sets, while an additional 
1971 peptide groups were exclusively detected in the in-
solution set and 2819 in the FASP set (Fig. 6A). On the 
protein level, 1233 proteins were detected with both 
preparation techniques. Employing the FASP technique, 
an additional 274 proteins could be identified as com-
pared to an additional 189 proteins with the in-solution 
protocol (Fig. 6B).

While the FASP protocol allowed identification of 
more proteins and peptide groups than in-solution 

Fig. 6  Comparison of the sample preparation techniques (1) in-solution digestion and (2) filter-assisted sample preparation (FASP). Five replicate 
CSF pool samples were prepared with in-solution digestion protocol and FASP each. LC–MS analysis was performed separately for both sets of 
replicates. Following quantification, the number of peptides identified employing FASP and in-solution digestion were determined (A). Likewise, the 
amount of identified proteins with both approaches was evaluated (B). To assess contamination, the number of peptides derived from keratins was 
calculated for the two preparation techniques (C). Log2-transformed reporter ion intensities (RII) of peptide group abundances were plotted for all 
TMT channels (in-solution and FASP) for evaluation of yield and reproducibility (D)
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digestion, 216 of the peptide groups identified with FASP 
were keratins, a commonly observed contaminant in pro-
teomic experiments, originating from skin, hair and nails 
[35]. In comparison, only 108 keratin peptide groups 
were identified with the in-solution protocol (Fig.  6C). 
These results indicate that the FASP protocol may be 
more prone to contamination from the laboratory envi-
ronment than the in-solution protocol.

Since we were also concerned with reproducibility and 
peptide yield, we assessed the peptide group abundance 
of each channel in both sets. Log-transformed peptide 
group abundances neither differed largely between the 
TMT channels nor between sample preparation tech-
niques (Fig. 5D), indicating similar peptide yield for the 
protocols. To determine reproducibility of technical rep-
licates, the median CV of the protein abundances was 
calculated, resulting in 4.3% for in-solution and 10.8% 
for FASP (unnormalized data). Consequently, in-solution 
appears to be more reproducible than FASP. Lastly, TMT 
labeling efficiencies of the two approaches were com-
pared. With a labeling efficiency of 98% for FASP and 
95% for in-solution digestion, the sample preparation 
techniques both allow for near-complete labeling.

TMT labeling efficiency
To determine the minimum TMT amount required for 
efficient labeling of CSF proteins, individual CSF sam-
ples were labeled with different amounts of the TMT-
pro reagents: 0.5 mg, 0.25 mg and 0.1 mg of TMT were 
employed per labeling reaction of 50 µL CSF (containing 
an estimated 15–20 µg of protein) resulting in three TMT 
sets. The TMT sets were then fractionated and analyzed 
separately. Labeling efficiencies as well as median peptide 
and protein CVs were calculated for each set (Table  1). 
The labeling efficiency was determined by subtracting 
the amount of peptide groups without a TMT label from 
the ones with TMT label, divided by the sum of all pep-
tide groups. Decreasing the TMT amount by half reduces 
labeling efficiency by a mere 3.5% while a fivefold reduc-
tion in TMT amount leads to a 10% decrease in labeling 
efficiency. Neither median peptide nor protein CV seem 

to be affected by a decrease in TMT amount down to 
0.1 mg/50 µL CSF.

As incomplete labeling is expected to coincide with 
an overall decreased reporter ion intensity (RII), RII was 
evaluated for each channel in each set (Additional file 3: 
Fig. S2). Comparing all 3 sets, a slight decrease in the 
median RII (MRII) can be observed if less than 0.5  mg 
TMT is employed (Table  1). However, log2 (MRII) is 
higher for 0.1 mg than for 0.25 mg TMT. In conclusion, 
no clear trend could be observed pointing to incomplete 
labeling.

Next, the distribution of median centred peptide ratios 
of peptides common to all sets was investigated to deter-
mine whether reduced TMT amount could distort pep-
tide ratio distributions. Distributions were plotted for 
each sample (channel) across all sets (Additional file  4: 
Fig. S3). In most samples, peptide ratio distributions 
are not affected by a decreased TMT amount. Some of 
the 0.25-mg TMT samples (127N, 127C, 129C) and/
or 0.1 mg TMT samples (129C, 130C, 132N, 133C) dis-
played a slightly altered distribution but overall, the RII 
distributions were similar for samples labeled with differ-
ent amounts of TMT.

In conclusion, labeling efficiency continuously 
decreases with decreasing TMT amount. However, the 
data indicate that MRII and peptide ratio distribution are 
only slightly, if at all, affected by the reduction in TMT 
amount.

Performance of the normalization methods in a clinical 
study of AD
We applied all four normalization methods to a published 
data set from a clinical proteomic study of a cohort from 
the European Medical Information Framework (EMIF), 
comprising CSF from AD patients (n = 93), healthy con-
trols (n = 126), and patients with mild cognitive impair-
ment (n = 198) as well as subjective cognitive impairment 
(n = 61): median normalization, normalization to 
total peptide amount, quantile normalization and the 
TAMPOR function, which has been recently employed in 
numerous TMT CSF studies [24, 25, 36]. The TAMPOR 
function can be viewed as an extension of median nor-
malization and is essentially based on Tukey’s median 
polish algorithm. It aims at removing batch effects while 
remaining robust to outliers and preserving overall bio-
logical variance [24]. Removal of batch effects i.e., inter-
experimental bias, is important when extracting data 
from multiple TMT sets. It is often achieved by the addi-
tion of a GIS to each set, comprised of pooled individual 
study samples [37]. The GIS channel serves as reference 
sample and can be used as denominator when calculating 
protein-wise ratios.

Table 1  Parameters evaluating the completeness of the TMT 
labeling reaction at 0.5 mg, 0.25 mg, and 0.1 mg per 50 µL CSF 
sample

Amount 
TMT/50 µL CSF 
[mg]

Labeling 
efficiency 
[%]

Median 
peptide CV 
[%]

Median 
protein CV 
[%]

Median 
log2(MRII)

0.5 91.42 43.9 36.9 16.2

0.25 87.93 47.5 36.1 14.5

0.1 79.98 45.5 34.6 15.7
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To assess the performance of the normalization meth-
ods, we examined potential biomarker candidates with 
protein abundances significantly altered in AD subjects 
vs. controls and tested how the significance of the asso-
ciation of these proteins with clinical AD was influenced 
by the respective normalization method. In addition, we 
investigated how many biomarker candidates could be 
identified with each normalization approach and how 
this compared to the unnormalized data. Importantly, 
abundance differences between control and AD sub-
jects are expected to be strengthened for true biomark-
ers upon successful normalization, resulting in improved 
p-values and thus more biomarker candidates. Using 
t-test and applying BH-correction for multiple testing, 
a total of 64 biomarker candidates were identified using 
TAMPOR, closely followed by quantile normalization 
(63) and median normalization (61). In contrast, total 
peptide amount normalization and unnormalized data 
yielded 7 and 19 potential candidates, respectively. Com-
paring the corrected p-values of the top 20 biomarker 
candidates among normalization approaches, mean 
p-values were lowest for quantile (5.3 × 10–9), TAMPOR 
(4.5 × 10–8) and median (5.0 × 10–8) (Fig.  7). TAMPOR 
and median performed especially well for the top 12 
candidates while for the top 13–20 candidates, quantile 
normalization yielded the lowest p-values. Total pep-
tide normalization performed worse than no normaliza-
tion, yielding considerably higher p-values than all other 
approaches evaluated.

Using TAMPOR normalization, we extracted a list of 
64 AD biomarker candidates, 46 of which were increased 
and 18 of which were decreased in AD subjects compared 
to cognitively healthy controls (Table 2). Cross validating 
these protein hits with two recent independent studies by 
Higginbotham et al. and Bader et al., we discovered sig-
nificant overlap among proposed biomarker candidates 
[36, 38]. Out of the 64 biomarker candidates, 23 proteins 
(36%) were found to also be significantly increased in 
the CSF1 discovery cohort of Higginbotham (FDR < 1%), 
while 14 proteins (22%) overlapped with the “40 protein 
signature of AD” put forward by Bader [38].

Finally, we conducted a gene ontology (GO) analy-
sis to determine biological processes enriched in the 
group of significantly increased and decreased proteins, 

respectively. GO terms ranking among the most sig-
nificant, and best portraying the obtained list of GO hits 
were selected (Fig. 8). The entire list of GO terms is avail-
able as Additional file 1. Proteins significantly increased 
in AD mostly mapped to glycolytic-related processes 
as well as core metabolic processes such as energy and 
nucleotide metabolism. In addition, multiple proteins 
were linked to phosphorylation, a post-translational 
modification implicated in abnormal tau accumulation 
[39].

In contrast, the list of significantly decreased proteins 
was too small to apply a stringent BH-based cut-off. 
Instead, uncorrected p-values were evaluated. Decreased 
proteins were mainly enriched in GO-terms relating to 
synaptic signalling or signalling pathways in general. Fur-
ther, protein secretion and hormonal regulation were 
found to be among the top enriched GO-terms.

Discussion
Normalization of TMT ratios in CSF
A general recommendation for TMT proteomic analysis 
is that the overall protein composition and concentra-
tions of the samples is kept similar, to ensure even labe-
ling yield and similar matrix effects between samples. 
Therefore, in TMT analysis of cell and tissue samples, the 
protein concentration in the study samples is determined 
and adjusted so that the same amount is subjected to 
TMT labeling. This strategy, however, would arguably be 
unlikely to be successful for CSF, in which protein com-
position and concentration of CSF varies significantly 
between individuals. A major contributor is blood–brain 
barrier function, which decreases in several medical con-
ditions including AD, leading to a greater influx of blood 
proteins into the CSF [40, 41]. Brain atrophy, occurring 
in many neurodegenerative disorders, leads to decreased 
general secretion of proteins from the affected regions. 
Moreover, differing CSF turnover rates may affect CSF 
protein concentrations [42, 43]. Measurement of specific 
biomarkers relative to the total protein concentration in 
CSF would thus be strongly distorted by such general 
variations. This is a well-known fact in clinical laboratory 
medicine, where established CSF markers of neurode-
generative pathologies, such as the amyloid-β 1–42/1–
40 ratio, total-Tau, phospho-Tau, neurofilament-light 

Fig. 7  Heatmap of BH-corrected p-values for the top 20 biomarker candidates identified with all normalization approaches
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Table 2  List of top 64 proteins significantly differing in abundance between AD and control subjects in the EMIF-AD cohort

Accession number Gene name BH-corrected p-value log2-fold change Number of 
observations control

Number of 
observations 
AD

P63104 YWHAZ 1.4E−24 0.49 122 91

P62258 YWHAE 1.8E−21 0.37 122 91

P09936 UCHL1 4.1E−19 0.37 106 77

Q9H4F8 SMOC1 5.8E−16 0.31 120 90

P61981 YWHAG 7.2E−14 0.31 109 83

P07196 NEFL 7.5E−13 0.58 69 52

P18669 PGAM1 7.5E−13 0.20 109 84

P05413 FABP3 5.6E−12 0.29 112 82

P31150 GDI1 5.6E−12 0.17 123 88

P47972 NPTX2 4.4E−11 −0.35 125 91

P62937 PPIA 1.8E−10 0.20 121 89

P00558 PGK1 3.0E−10 0.15 114 90

O94760 DDAH1 4.9E−08 0.18 124 93

P10636 MAPT 6.9E−07 0.40 56 45

P14174 MIF 9.7E−07 0.19 101 82

P04075 ALDOA 2.2E−06 0.19 124 90

P62942 FKBP1A 2.5E−06 0.21 105 78

Q92686 NRGN 4.3E−06 0.31 99 73

P16949 STMN1 5.8E−06 0.20 118 87

P40925 MDH1 6.0E−06 0.19 125 89

P33908 MAN1A1 6.0E−06 − 0.08 122 91

O95502 NPTXR 7.5E−06 − 0.24 126 91

Q6EMK4 VASN 1.2E−05 0.10 123 91

Q9Y2T3 GDA 1.4E−05 0.24 125 93

P12277 CKB 1.8E−05 0.14 120 90

Q12805 EFEMP1 1.8E−05 0.12 125 91

P36222 CHI3L1 2.2E−05 0.26 124 92

P06744 GPI 2.2E−05 0.21 73 67

P00492 HPRT1 2.4E−05 0.20 119 87

Q92765 FRZB 2.4E−05 0.20 125 92

O15240 VGF 2.7E−05 − 0.26 124 90

P60983 GMFB 3.9E−05 0.11 121 89

Q13421 MSLN 7.3E−05 − 0.23 121 89

O00142 TK2 2.6E−04 0.13 107 81

Q13228 SELENBP1 2.7E−04 − 0.15 124 90

P23297 S100A1 3.0E−04 0.22 48 33

P17677 GAP43 3.0E−04 0.19 126 90

Q92743 HTRA1 3.1E−04 0.09 126 92

P0DP23 CALM1 3.7E−04 0.16 120 89

P06733 ENO1 3.8E−04 0.14 119 89

P31946 YWHAB 3.9E−04 0.17 116 90

Q9HCB6 SPON1 4.2E−04 0.11 125 91

P62328 TMSB4X 4.6E−04 0.15 124 90

P10451 SPP1 6.1E−04 0.16 126 90

Q9Y279 VSIG4 6.3E−04 0.17 123 88

P29120 PCSK1 6.3E−04 − 0.22 121 90

P14618 PKM 7.4E−04 0.15 119 90

P10599 TXN 8.0E−04 0.11 121 89
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polypeptide, and glial-fibrillary acidic protein, are all 
measured relative to CSF volume and not protein con-
centration [44–46], as the latter would degrade their bio-
marker performance significantly.

A potential drawback of performing TMT proteomic 
analysis with fix-volume CSF samples is that differ-
ences in protein concentration and composition of 
the samples may distort quantification. Furthermore, 
compositional bias may also affect the performance of 
the normalization methods used to adjust the TMT 
reporter ion intensities to correct for systematic experi-
mental variation. Indeed, this is what we observed 

when comparing TMT quantification of a set of test 
proteins prepared in aliquots of a CSF pool or in indi-
vidual CSF samples (Fig. 3). For the CSF pool (identical 
protein composition and concentrations in all samples), 
the TMT ratios of all test proteins showed a strong 
linear response relative to their concentration, and all 
four tested normalization methods performed simi-
larly. In contrast, for the individual samples, the cor-
relation between TMT ratios and concentrations of the 
test proteins was worse, and the choice of normaliza-
tion method affected the result more. We hypothesize 
that this discrepancy in quantitation accuracy may be 

Data was normalized employing the TAMPOR function

Table 2  (continued)

Accession number Gene name BH-corrected p-value log2-fold change Number of 
observations control

Number of 
observations 
AD

P05060 CHGB 8.6E−04 − 0.14 125 90

P55286 CDH8 1.5E−03 − 0.11 124 91

Q14697 GANAB 1.6E−03 − 0.09 124 89

P01213 PDYN 1.8E−03 − 0.14 123 91

Q06830 PRDX1 1.9E−03 0.10 120 87

Q5VSG8 MANEAL 2.1E−03 − 0.10 124 90

Q9H2A7 CXCL16 2.7E−03 0.16 85 63

P08637 FCGR3A 2.8E−03 0.16 111 88

P54756 EPHA5 3.2E−03 − 0.13 126 93

O60241 ADGRB2 3.5E−03 − 0.13 121 90

P09104 ENO2 3.6E−03 0.12 125 89

Q92932 PTPRN2 3.8E−03 − 0.13 125 93

P13521 SCG2 4.5E−03 − 0.16 123 91

P01303 NPY 4.6E−03 − 0.24 99 71

P30086 PEBP1 5.3E−03 0.10 123 91

P01210 PENK 6.3E−03 − 0.12 121 90

Fig. 8  Statistical overrepresentation test of GO-terms enriched in significantly increased (A) and significantly decreased proteins (B) in AD subjects 
vs. controls. Of all significantly enriched GO-terms, 5 terms were chosen that ranked among the most significantly enriched and best represented 
the entire list. The vertically drawn dashed line marks the threshold of p < 0.05. In the case of significantly increased proteins, an FDR correction was 
performed while for the decreased proteins uncorrected p-values are displayed
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due to interferences from co-isolated peptides which, 
depending on individual sample composition and pep-
tide abundance, affect the reporter ion intensities to 
varying degrees.

Normalization to a spiked-in peptide standard (QCAL) 
showed the lowest performance of the tested normaliza-
tion strategies, yielding results similar to those obtained 
without normalization. This is in agreement with a TMT 
plasma study conducted by Dubois et  al. [32] in which 
normalization to an external standard protein yielded 
comparable results to unnormalized data. As normali-
zation to an external spike-in is targeted at minimizing 
technical variation, it may be argued that the present data 
already exhibits low technical variability and that conse-
quently results cannot be improved significantly by nor-
malization to a spiked-in peptide standard. This is indeed 
supported by data displayed in Fig.  2, showing limited 
technical variation. QCAL, being a non-human peptide 
mix added before sample preparation, can neither cor-
rect for unwanted biological variability nor potential 
variation in tryptic digestion or pre-analytical variabil-
ity. Since unwanted biological variability may arguably 
be the greatest factor influencing quantitation, an exter-
nal spike-in standard appears rather unsuitable for TMT 
CSF.

Median and quantile normalization appear to have 
outperformed Total Peptide amount normalization in 
that they were more successful in reducing overall CVs 
(Fig. 3N). One may speculate that this is because median- 
and quantile methods are based on normalizing TMT 
ratios relative to median and overall sample distribution 
rather than total protein abundance, making them less 
liable to aberrant abundances in a few proteins, even if 
these are large. In addition, both median and quantile 
normalization make individual TMT channels more 
comparable by either shifting or equalizing abundance 
distributions across a TMT set. Likely, this leads to a par-
tial correction for unwanted biological variability result-
ing in a reduction of overall CV.

Comparison of MS2 and MS3 quantification
Comparing TMT ratios obtained with MS2 and MS3 
mode shows that MS3 can mitigate the effects of ratio 
compression. However, as expected, this comes at the 
expense of detection sensitivity leading to a smaller num-
ber of proteins which can be identified in an exploratory 
study. Introducing a third stage of precursor isolation and 
fragmentation leads to the loss of reporter ion intensi-
ties at MS3 level which coincides with a reduced number 
of quantifiable peptides. We thus recommend that both 
competing aspects, detection sensitivity and accuracy, 
are carefully weighed in the face of the purpose of the 

respective study. For exploratory purposes, for instance, 
it may be advisable to employ MS2 to maximize the 
number of identified proteins, forfeiting quantitation 
accuracy.

Evaluating the performance of sample preparation 
techniques
Comparative evaluation of an in-solution sample prepa-
ration protocol with FASP demonstrated that (i) more 
peptides and proteins could be detected with the FASP 
approach but also that (ii) FASP appears to be more liable 
to contamination from the laboratory environment, as 
indicated by the identification of larger number of kera-
tin-derived peptides. Peptide yield and labeling efficiency 
did not differ considerably among both approaches. 
Higher sensitivity of FASP towards contamination may 
be explained by the multitude of sample preparation and 
spinning steps, each of which increases the likelihood for 
contamination and allows for contaminants on the lid 
tube to be transferred to the bottom. Most likely, more 
proteins were identified with FASP due to the usage of 
SDS as strong ionic detergent which efficiently solubilizes 
and denatures proteins in CSF. Despite the high number 
of identified proteins employing FASP, it should be noted 
that it is more laborious than in-solution and requires 
molecular weight cut-off filters. This can pose a major 
drawback, especially when conducting large-scale prot-
eomic studies.

TMT labeling efficiency
TMT labeling efficiency analysis revealed that labeling 
efficiency is decreased by appr. 10% when reducing the 
TMT amount by 80%. Although this does appear like a 
considerable reduction in labeling efficiency, neither 
MRII nor sample peptide distribution seemed to be 
affected largely. Thus, it can be inferred that a decrease in 
TMT amount of up to 0.1 mg/50 µL CSF does not influ-
ence the experimental outcome to a large extent. The offi-
cial TMT labeling protocol recommends a ratio range of 
1:5 to 1:10 (w:w), sample to tag [47]. However, this value 
is not necessarily expected to be applicable to crude CSF 
with a severely complex sample background. Assuming 
the protein amount of 7.5 µg to 30 µg per 50 µL CSF [10, 
11], this would correspond to a minimum TMT amount 
of 0.04–0.15  mg, respectively. All in all, it appears that 
the sample background does not significantly interfere 
with the TMT labeling reaction and that TMT protocol 
recommendations can be followed.

Application to EMIF‑AD dataset
Application of different normalizations to the EMIF-
AD dataset showed that median-based approaches 
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(TAMPOR and median) as well as quantile normaliza-
tion outperform no normalization and normalization 
based on total peptide amount. As suggested above, 
median-based and quantile normalization may be supe-
rior to total peptide normalization as they are more 
robust to outliers i.e., highly abundant proteins, and are 
superior in maximizing the comparability among TMT 
channels. In fact, our data show that even no normali-
zation is preferable to normalization to total peptide 
amount.

TAMPOR, following a median polish algorithm, 
appears to yield slightly better p-values than the sim-
ple median shift. This may indicate that dedicated algo-
rithms are required to optimally handle CSF sample 
complexity and to adequately control for batch effects. 
Overall, TAMPOR, median and quantile normalization 
performed quite similarly. Comparison of our results 
with available literature further supported the valid-
ity of our normalization approaches. However, it should 
be noted that quantile normalization forces all samples 
to adopt a uniform abundance distribution which could 
potentially obscure biological differences and overcorrect 
the data. We thus conclude that likely median-based nor-
malization appears most suitable for CSF TMT data.

Notably, data normalization was mainly conducted 
on the protein level in this study. Previous studies have 
shown that normalization can also be successfully 
applied at spectrum or peptide level [48–50]. The choice 
depends on several factors including the software used 
for MS data processing as well as the generated output. 
Also, the extent of analytical bias introduced by down-
stream data processing, such as rolling up peptide to 
protein abundances, may play a role. Importantly, only a 
fraction of all available and popular normalization tech-
niques in TMT has been tested in this study [51], making 
no claim to completeness. Thus, it cannot be excluded 
that even more suitable normalization approaches may 
exist for TMT CSF data.

By employing the TAMPOR function, we were able 
to identify 64 potential biomarker candidates signifi-
cantly altered in AD patients compared to cognitively 
healthy controls in the EMIF cohort. We investigated 
enriched GO terms among these proteins and found sig-
nificantly increased proteins in AD to be mainly related 
to core metabolic as well as glycolytic processes. To 
date, mounting evidence indeed suggests a deregula-
tion in both energy and purine metabolism in AD sub-
jects [52–55]. Also, glycolytic dysfunction has long been 
recognized to occur even in the preclinical stage of AD 
[56]. Significantly decreased proteins, on the other hand, 
were largely enriched in GO-terms mapping to synaptic 
signalling, protein secretion or transport. According to 
many studies, synaptic dysfunction is a key characteristic 

of AD [57]: loss of synapses positively correlates with AD 
severity. It thus appears that enriched GO-terms are con-
gruent with AD-related findings stated in the literature, 
providing additional indication for their involvement in 
AD pathology.

Conclusion
In this study we have addressed multiple challenges 
associated with TMT proteomics in CSF. We ascer-
tained that a heterogeneous CSF sample background 
negatively affects quantitation accuracy and necessi-
tates appropriate normalization. While normalization 
to an external spiked-in peptide standard, as well as 
normalization to total peptide amount, yielded unsatis-
factory results, median-based approaches and quantile 
normalization evidently reduced unwanted variabil-
ity. In addition, we generated data to help evaluate the 
choice of adequate TMT amount, sample preparation 
technique as well as MS analysis mode for respective 
TMT studies in CSF. Finally, we presented a biomarker 
candidate list of 64 significantly altered proteins in the 
proteome of AD patients compared to controls stem-
ming from the EMIF-cohort.

Looking to the future, we hope that our results can 
provide guidance when working with TMT in CSF sam-
ples and similar clinical studies where heterogeneous 
samples are involved, helping to make critical decisions 
for sample preparation and data analysis. In addition, 
we are confident that the biomarker candidate list pre-
sented in this study can form the basis for future bio-
marker development studies.
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Additional file 2: Figure S1. Dependency of CV on protein and peptide 
intensities in both pool (set 1) and individual CSF sample sets (set 2). 
Technical CVs were plotted vs. their corresponding log-transformed pro-
tein (A) and peptide intensities (B) in the pool CSF dataset. Likewise, the 
dependency of total CVs on log-transformed protein (C) and peptide (D) 
intensities was evaluated for the individual CSF sample dataset.

Additional file 3: Figure S2. Reporter ion intensities (RII) per TMT channel 
in log2-space at differing TMT amounts. For each individual CSF sample 
corresponding to a specific TMT channel, peptide RIIs were calculated, 
log2-transformed, and visualized as boxplot. Every sample was labeled 
with 3 different TMT amounts per 50 µL CSF: 0.5 mg, 0.25 mg, and 0.1 mg.

Additional file 4: Figure S3. Distribution of median centred peptide-
ratios for each individual CSF sample i.e., channel at differing TMT labeling 
amounts. Individual CSF samples, corresponding to a specific TMT chan-
nel, were prepared separately, and labeled with 0.5 mg (blue), 0.25 mg 
(black), 0.1 mg (red) TMT per 50 µl CSF. Following LC–MS analysis, the 
density distribution of log2 peptide ratios (channel reporter ion intensity) 
was calculated and median centred employing median reporter ion 
intensity in each sample (MRII). Only peptides common to all three sets 
were considered for analysis.
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