Skip to main content


Genistein-induced proteome changes in the human endometrial carcinoma cell line, ishikawa


Epidemiological studies have shown that Asian populations display a lower incidence of hormone-dependant cancers, cardiovascular disease, osteoporosis, and menopausal ailments compared to Western societies. Available data support the proposal that lower incidence is associated with the high dietary consumption of isoflavones, such as genistein. This study used two-dimensional electrophoresis to characterize the effect of genistein on the proteome of an endometrial tumor cell model, namely the Ishikawa cell line. Proteome maps displaying approx 1800 proteins were obtained from cells treated with vehicle or genistein at physiologically attainable concentrations of 0.5, 5, or 50 μM or supra-physiological concentration, 500 μM. The effects of genistein on protein expression were characterized using image analysis software. A total 65 protein spots displayed a significant decrease in expression and 32 proteins displayed a significant increase in expression. Of these protein spots, 29 were randomly selected for characterization by matrix assisted laser desorption/ionization tandem mass spectrometry, yielding 18 different proteins. This type of analysis enabled the characterization of a wide range of cellular proteins and allowed for the identification of functional and biochemical pathways that may be regulated or affected by genistein, including cellular transcription, cell proliferation, stress response, or modulation of oncogenic pathways.


  1. 1.

    Knight, D. C. and Eden, J. A. (1995) Phytoestrogens: a short review.Maturitas 22, 167–175.

  2. 2.

    Bingham, S. A., Atkinson, C., Liggins, J., Bluck, L., and Coward, A. (1998) Phytooestrogens: where are we now?Br. J. Nutr. 79, 393–406.

  3. 3.

    Dijsselbloem, N., Vanden Berghe, W., De Naeyer, A., and Haegeman, G. (2004) Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections. Multi-purpose nutraceuticals at the crossroad of hormone replacement, anti-cancer and anti-inflammatory therapy.Biochem. Pharmacol. 68, 1171–1185.

  4. 4.

    Nagata, C., Takatsuka, N., Kurisu, Y., and Shimizu, H. (1998) Decreased serum total cholesterol concentration is associated with high intake of soy products in Japanese men and women.J. Nutr. 128, 209–213.

  5. 5.

    Liao, C. H., Pan, S. L., Guh, J. H., and Teng, C. M. (2004) Genistein inversely affects tubulin-binding agent-induced apoptosis in human breast cancer cells.Biochem. Pharmacol. 67, 2031–2038.

  6. 6.

    Magee, P. J., McGlynn, H., and Rowland, I. R. (2004) Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro.Cancer Lett. 208, 35–41.

  7. 7.

    Markovits, J., Linassier, C., Fosse, P., et al. (1989) Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II.Cancer Res. 49, 5111–5117.

  8. 8.

    Li, Y. and Sarkar, F. H. (2002) Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway.Clin. Cancer Res. 8, 2369–2377.

  9. 9.

    Akiyama, T., Ishida, J., Nakagawa, S., et al. (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases.J. Biol. Chem. 262, 5592–5595.

  10. 10.

    Casagrande, F. and Darbon, J. M. (2001) Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK1.Biochem. Pharmacol. 61, 1205–1215.

  11. 11.

    Chinni, S. R., Alhasan, S. A., Multani, A. S., Pathak, S., and Sarkar, F. H. (2003) Pleotropic effects of genistein on MCF-7 breast cancer cells.Int. J. Mol. Med. 12, 29–34.

  12. 12.

    Salti, G. I., Grewal, S., Mehta, R. R., Das Gupta, T. K., Boddie, A. W., Jr., Constantinou, A. I. (2000) Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells.Eur. J. Cancer 36, 796–802.

  13. 13.

    Fuchs, D., Erhard, P., Rimbach, G., Daniel, H., and Wenzel, U. (2005) Genistein blocks homocystein-induced alterations in the proteome of human endothelial cells.Proteomics 5, 2808–1288.

  14. 14.

    Adachi, T., Okuno, Y., Takenaka, S., et al. (2005) Comprehensive analysis of the effect of phytoestrogen, daidzein, on a testicular cell line, using mRNA and protein expression profile.Food Chem. Toxicol. 43, 529–535.

  15. 15.

    Fuchs, D., Erhard, P., Turner, R., Rimbach, G., Daniel, H., and Wenzel, U. (2005) Genistein reverses changes of the proteome induced by oxidized-LDL in EA.hy 926 human endothelial cells.J. Proteome Res. 4, 369–376.

  16. 16.

    Fuchs, D., de Pascual-Teresa, S., Rimbach, G., et al. (2005) Proteome analysis for identification of target proteins of genistein in primary human endothelial cells stressed with oxidized LDL or homocysteine.Eur. J. Nutr. 44, 95–104.

  17. 17.

    Rowell, C., Carpenter, D. M., and Lamartiniere, C. A. (2005) Chemoprevention of breast cancer, proteomic discovery of genistein action in the rat mammary gland.J. Nutr. 135, 2953S-2959S.

  18. 18.

    Xu, X., Harris, K. S., Wang, H. J., Murphy, P. A., and Hendrich, S. (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women.J. Nutr. 125, 2307–2315.

  19. 19.

    Bloedon, L. T., Jeffcoat, A. R., Lopaczynski, W., et al. (2002) Safety and pharmacokinetics of purified soy isoflavones: single-dose administration to postmenopausal women.Am. J. Clin. Nutr. 76, 1126–1137.

  20. 20.

    Busby, M. G., Jeffcoat, A. R., Bloedon, L. T. et al. (2002) Clinical characteristics and pharmacokinetics of purified soy isoflavones: single-dose administration to healthy men.Am. J. Clin. Nutr. 75, 126–136.

  21. 21.

    Coldham, N. G. and Sauer, M. J. (2000) Pharmacokinetics of [(14)C]Genistein in the rat: gender-related differences, potential mechanisms of biological action, and implications for human health.Toxicol. Appl. Pharmacol. 164, 206–215.

  22. 22.

    Farhan, H., Wahala, K., Adlercreutz, H., and Cross, H. S. (2002) Isoflavonoids inhibit catabolism of vitamin D in prostate cancer cells.J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 777, 261–268.

  23. 23.

    Cordwell, S. J., Basseal, D. J., Bjellqvist, B., Shaw, D. C., and Humphery-Smith, I. (1997) Characterisation of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients.Electrophoresis 18, 1393–1398.

  24. 24.

    Immler, D., Gremm, D., Kirsch, D., Spengler, B., Presek, P., Meyer, H. E. (1998) Identification of phosphorylated proteins from thrombin-activated human platelets isolated by two-dimensional gel electrophoresis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS).Electrophoresis 19, 1015–1023.

  25. 25.

    Dunn, M. J. (1987) Two-dimensional gel electrophoresis of proteins.J. Chromatogr. 418, 145–185.

  26. 26.

    Ohta, H., Sakamoto, H., and Satoh, K. (1998) In vitro effects of gonadotropin-releasing hormone (GnRH) analogue on cancer cell sensitivity to cis-platinum.Cancer Lett. 134, 111–118.

  27. 27.

    Gorg, A., Obermaier, C., Boguth, G., et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients.Electrophoresis 21, 1037–1053.

  28. 28.

    Nawrocki, A., Larsen, M. R., Podtelejnikov, A. V., et al. (1998) Correlation of acidic and basic carrier ampholyte and immobilized pH gradient two-dimensional gel electrophoresis patterns based on mass spectrometric protein identification.Electrophoresis 19, 1024–1035.

  29. 29.

    Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R., and Roepstorff, P. (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry.J. Mass. Spectrom. 34, 105–116.

  30. 30.

    Larsen, M. R., Cordwell, S. J., and Roepstorff, P. (2002) Graphite powder as an alternative or supplement to reversed-phase material for desalting and concentration of peptide mixtures prior to matrix-assisted laser desorption/ionization-mass spectrometry.Proteomics 2, 1277–1287.

  31. 31.

    Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data.Electrophoresis 20, 3551–3567.

  32. 32.

    Larsen, M. R. and Roepstorff, P. (2000) Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis.Fresenius J. Anal. Chem. 366, 677–690.

  33. 33.

    Kawauchi, K., Lazarus, A. H., Sanghera, J. S., Man, G. L., Pelech, S. L., and Delovitch, T. L. (1996) Regulation of BCR-and PKC/Ca(2+)-mediated activation of the Raf1/MEK/MAPK pathway by protein-tyrosine kinase and-tyrosine phosphatase activities.Mol. Immunol. 33, 287–296.

  34. 34.

    Davis, J. N., Kucuk, O., and Sarkar, F. H. (1999) Genistein inhibits NF-kappa B activation in prostate cancer cells.Nutr. Cancer 35, 167–174.

  35. 35.

    Schmidt, E. V. (2004) The role of c-myc in regulation of translation initiation.Oncogene 23, 3217–3221.

  36. 36.

    Schmidt, E. V. (1999) The role of c-myc in cellular growth control.Oncogene 18, 2988–2996.

  37. 37.

    Rosenwald, I. B. (2004) The role of translation in neoplastic transformation from a pathologist’s point of view.Oncogene 23, 3230–3247.

  38. 38.

    Secombe, J., Pierce, S. B., and Eisenman, R. N. (2004) Myc: a weapon of mass destruction.Cell 117, 153–156.

  39. 39.

    Niederacher, D., An, H. X., Cho, Y. J., Hantschmann, P., Bender, H. G., and Beckmann, M. W. (1999) Mutations and amplification of oncogenes in endometrial cancer.Oncology 56, 59–65.

  40. 40.

    Borst, M. P., Baker, V. V., Dixon, D., Hatch, K. D., Shingleton, H. M., and Miller, D. M. (1990) Oncogene alterations in endometrial carcinoma.Gynecol. Oncol. 38, 364–366.

  41. 41.

    Bai, M. K., Costopoulos, J. S., Christoforidou, B. P., and Papadimitriou, C. S. (1994) Immunohistochemical detection of the c-myc oncogene product in normal, hyperplastic and carcinomatous endometrium.Oncology 51, 314–319.

  42. 42.

    Geisler, J. P., Geisler, H. E., Manahan, K. J. et al. (2004) Nuclear and cytoplasmic c-myc staining in endometrial carcinoma and their relationship to survival.Int. J. Gynecol. Cancer 14, 133–137.

  43. 43.

    Kim, J. H., Paek, K. Y., Choi, K., et al. (2003) Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner.Mol. Cell. Biol. 23, 708–720.

  44. 44.

    Byrjalsen, I., Mose Larsen, P., Fey, S. J., Nilas, L., Larsen, M. R., and Christiansen, C. (1999) Two-dimensional gel analysis of human endometrial proteins: characterization of proteins with increased expression in hyperplasia and adenocarcinoma.Mol. Hum. Reprod. 5, 748–756.

  45. 45.

    Shah, Y. M., Basrur, V., and Rowan, B. G. (2004) Selective estrogen receptor modulator regulated proteins in endometrial cancer cells.Mol. Cell. Endocrinol. 219, 127–139.

  46. 46.

    Evans, J. R., Mitchell, S. A., Spriggs, K. A., et al. (2003) Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo.Oncogene 22, 8012–8020.

  47. 47.

    Yan, C. H., Chen, X. G., Li, Y., and Han, R. (1999) Effects of genistein, a soybean-derived isoflavone, on proliferation and differentiation of B16-BL6 mouse melanoma cells.J. Asian Nat. Prod. Res. 1, 285–299.

  48. 48.

    Yang, Y., Yoo, H. M., Choi, I., Pyun, K. H., Byun, S. M., and Ha, H. (1996) Interleukin 4-induced proliferation in normal human keratinocytes is associated with c-myc gene expression and inhibited by genistein.J. Invest. Dermatol. 107, 367–372.

  49. 49.

    Ouchi, H., Ishiguro, H., Ikeda, N., Hori, M., Kubota, Y., and Uemura, H. (2005) Genistein induces cell growth inhibition in prostate cancer through the suppression of telomerase activity.Int. J. Urol. 12, 73–80.

  50. 50.

    Konstantakopoulos, N., Montgomery, K. G., Chamberlain, N., et al. (2006) Changes in gene expressions elicited by physiological concentrations of genistein on human endometrial cancer cells.Mol. Carcinog. 45, 752–763.

  51. 51.

    Etienne-Manneville, S. and Hall, A. (2002) Rho GTPases in cell biology.Nature 420, 629–635.

  52. 52.

    Crespo, P. and Leon, J. (2000) Ras proteins in the control of the cell cycle and cell differentiation.Cell. Mol. Life Sci. 57, 1613–1636.

  53. 53.

    Yeh, E., Cunningham, M., Arnold, H., et al. (2004) A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells.Nat. Cell Biol. 6, 308–318.

  54. 54.

    Shinohara, N. and Koyanagi, T. (2002) Ras signal transduction in carcinogenesis and progression of bladder cancer: molecular target for treatment?Urol. Res. 30, 273–281.

  55. 55.

    Lucas, L., Penalva, V., Ramirez de Molina, A., Del Peso, L., and Lacal, J. C. (2002) Modulation of phospholipase D by Ras proteins mediated by its effectors Ral-GDS, PI3K and Raf-1.Int. J. Oncol. 21, 477–485.

  56. 56.

    Drew, J. E., Bown, D., and Gatehouse, J. A. (1993) Sequence of a novel plant ras-related cDNA from Pisum sativum.Plant Mol. Biol. 21, 1195–1199.

  57. 57.

    Lilja, J. F., Wu, D., Reynolds, R. K., and Lin, J. (2001) Growth suppression activity of the PTEN tumor suppressor gene in human endometrial cancer cells.Anticancer Res. 21, 1969–1974.

  58. 58.

    Myung, J. K., Afjehi-Sadat, L., Felizardo-Cabatic, M., Slavc, I., and Lubec, G. (2004) Expressional patterns of chaperones in ten human tumor cell lines.Proteome Sci. 2, 8.

  59. 59.

    Dastoor, Z. and Dreyer, J. (2000) Nuclear translocation and aggregate formation of heat shock cognate protein 70 (Hsc70) in oxidative stress and apoptosis.J. Cell Sci. 113, 2845–2854.

  60. 60.

    Turner, C. P., Panter, S. S., and Sharp, F. R. (1999) Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood.Brain Res. Mol. Brain Res. 65, 87–102.

  61. 61.

    Maeda, A., Ohguro, H., Maeda, T., et al. (2000) Aberrant expression of photoreceptor-specific calcium-binding protein (recoverin) in cancer cell lines.Cancer Res. 60, 1914–1920.

  62. 62.

    Yehiely, F. and Oren, M. (1992) The gene for the rat heat-shock cognate, hsc70, can suppress oncogene-mediated transformation.Cell. Growth Differ. 3, 803–809.

  63. 63.

    O’Neill, P. A., Shaaban, A. M., West, C. R., et al. (2004) Increased risk of malignant progression in benign proliferating breast lesions defined by expression of heat shock protein 27.Br. J. Cancer 90, 182–188.

  64. 64.

    Leonardi, R., Villari, L., Caltabiano, M., and Travali, S. (2001) Heat shock protein 27 expression in the epithelium of periapical lesions.J. Endod. 27, 89–92.

  65. 65.

    Sheth, K., De, A., Nolan, B., et al. (2001) Heat shock protein 27 inhibits apoptosis in human neutrophils.J. Surg. Res. 99, 129–133.

  66. 66.

    Faucher, C., Capdevielle, J., Canal, I., et al. (1993) The 28-kDa protein whose phosphorylation is induced by protein kinase C activators in MCF-7 cells belongs to the family of low molecular mass heat shock proteins and is the estrogen-regulated 24-kDa protein.J. Biol. Chem. 268, 15,168–15,173.

  67. 67.

    Korneeva, I., Bongiovanni, A. M., Girotra, M., Caputo, T. A., and Witkin, S. S. (2000) IgA antibodies to the 27-kDa heat-shock protein in the genital tracts of women with gynecologic cancers.Int. J. Cancer 87, 824–828.

  68. 68.

    Korneeva, I., Bongiovanni, A. M., Girotra, M., Caputo, T. A., and Witkin, S. S. (2000) Serum antibodies to the 27-kd heat shock protein in women with gynecologic cancers.Am. J. Obstet. Gynecol. 183, 18–21.

  69. 69.

    Shnyder, S. D. and Hubbard, M. J. (2002) ERp29 is a ubiquitous resident of the endoplasmic reticulum with a distinct role in secretory protein production.J. Histochem. Cytochem. 50, 557–566.

  70. 70.

    Ferrari, D. M., Nguyen Van, P., Kratzin, H. D., and Soling, H. D. (1998) ERp28, a human endoplasmic-reticulum-lumenal protein, is a member of the protein disulfide isomerase family but lacks a CXXC thioredoxin-box motif.Eur. J. Biochem. 255, 570–579.

  71. 71.

    Dissemond, J., Busch, M., Kothen, T., et al. (2004) Differential downregulation of endo-plasmic reticulum-residing chaperones calnexin and calreticulin in human metastatic melanoma.Cancer Lett. 203, 225–231.

  72. 72.

    Molinari, M., Eriksson, K. K., Calanca, V., et al. (2004) Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control.Mol. Cell. 13, 125–135.

  73. 73.

    Pike, S. E., Yao, L., Setsuda, J., et al. (1999) Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth.Blood 94, 2461–2468.

  74. 74.

    Yao, L., Pike, S. E., and Tosato, G. (2002) Laminin binding to the calreticulin fragment vasostatin regulates endothelial cell function.J. Leukoc. Biol. 71, 47–53.

  75. 75.

    Pike, S. E., Yao, L., Jones, K. D., et al. (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth.J. Exp. Med. 188, 2349–2356.

  76. 76.

    McCallum, C. D., Do, H., Johnson, A. E., and Frydman, J. (2000) The interaction of the chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC) with ribosome-bound nascent chains examined using photo-cross-linking.J. Cell. Biol. 149, 591–602.

  77. 77.

    Yokota, S., Yanagi, H., Yura, T., and Kubota, H. (2001) Cytosolic chaperonin-containing t-complex polypeptide 1 changes the content of a particular subunit species concomitant with substrate binding and folding activities during the cell cycle.Eur. J. Biochem. 268, 4664–4673.

  78. 78.

    Yokota, S., Yanagi, H., Yura, T., and Kubota, H. (1999) Cytosolic chaperonin is up-regulated during cell growth. Preferential expression and binding to tubulin at G(1)/S transition through early S phase.J. Biol. Chem. 274, 37,070–37,078.

  79. 79.

    Yokota, S., Yamamoto, Y., Shimizu, K., et al. (2001) Increased expression of cytosolic chaperonin CCT in human hepatocellular and colonic carcinoma.Cell Stress Chaperones 6, 345–350.

  80. 80.

    Weinmann, A. S., Bartley, S. M., Zhang, T., Zhang, M. Q., and Farnham, P. J. (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters.Mol. Cell. Biol. 21, 6820–6832.

  81. 81.

    Walsh, M. J., Shue, G., Spidoni, K., and Kapoor, A. (1995) E2F-1 and a cyclin-like DNA repair enzyme, uracil-DNA glycosylase, provide evidence for an autoregulatory mechanism for transcription.J. Biol. Chem. 270, 5289–5298.

  82. 82.

    Fusaro, G., Dasgupta, P., Rastogi, S., Joshi, B., and Chellappan, S. (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling.J. Biol. Chem. 278, 47,853–47,861.

  83. 83.

    Fusaro, G., Wang, S., and Chellappan, S. (2002) Differential regulation of Rb family proteins and prohibitin during camptothecin-induced apoptosis.Oncogene 21, 4539–4548.

  84. 84.

    Altenberg, B. and Greulich, K. O. (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes.Genomics 84, 1014–1020.

  85. 85.

    Sathe, S. S., Sizemore, N., Li, X., et al. (2004) Mutant human cells with constitutive activation of NF-kappaB.Proc. Natl. Acad. Sci. USA 101, 192–197.

  86. 86.

    Hu, M. C., Wang, Y., Qiu, W. R., Mikhail, A., Meyer, C. F., and Tan, T. H. (1999) Hematopoietic progenitor kinase-1 (HPK1) stress response signaling pathway activates IkappaB kinases (IKK-alpha/beta) and IKK-beta is a developmentally regulated protein kinase.Oncogene 18, 5514–5524.

  87. 87.

    Dhawan, P. and Richmond, A. (2002) A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells.J. Biol. Chem. 277, 7920–7928.

  88. 88.

    Dhawan, P. and Richmond, A. (2002) Role of CXCL1 in tumorigenesis of melanoma.J. Leukoc. Biol. 72, 9–18.

  89. 89.

    Choi, C., Cho, H., Park, J., Cho, C., and Song, Y. (2003) Suppressive effects of genistein on oxidative stress and NFkappaB activation in RAW 264.7 macrophages.Biosci. Biotechnol. Biochem. 67, 1916–1922.

Download references

Author information

Correspondence to Nicki Konstantakopoulos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konstantakopoulos, N., Larsen, M.R., Campbell, I.G. et al. Genistein-induced proteome changes in the human endometrial carcinoma cell line, ishikawa. Clin Proteom 2, 153–167 (2006).

Download citation

Key words

  • Genistein
  • endometrial cancer
  • proteomics
  • phytoestrogen
  • tumor suppression