Skip to main content


Protein expression analysis ofChlamydia pneumoniae persistence by combined surface-enhanced laser desorption ionization time-of-flight mass spectrometry and two-dimensional polyacrylamide gel electrophoresis

Article metrics

  • 357 Accesses


The aim of this study was to examine the protein expression profiles of persistentChlamydia pneumoniae by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Although 2D PAGE is still the method of choice for separating and detecting components of complex protein mixtures, it has several distinct disadvantages; i.e., being labor-intensive and having a bias toward proteins within the dynamic range of the gel condition. Hence, SELDI-TOF-MS technology was used to complement 2D PAGE.C. pneumoniae-infected HEp2 cells were treated with or without IFN-γ, and protein expression profiles were determined at 48 h postinfection (hpi). Unfractionated monolayers were also used for protein profiling by SELDI-TOF, using two different chip surface types: weak cation exchanger and hydrophobic surface. Under IFN-γ-induced persistence,C. pneumoniae expresses an altered protein expression profile. Twenty chlamydial proteins showed differential regulatory patterns by SELDI-TOF-MS, two of which, HSP-70 cofactor, and a hypothetical protein, were identified by 2D PAGE and mass spectrometry. Two additional proteins, phosphatidylserine decarboxylase and 30S ribosomal protein S17, were exclusively identified by SELDI TOF-MS analysis, as these were not present in sufficient quantity for detection by 2D PAGE. We propose that a combination of 2D-PAGE and SELDI-TOF-MS may complement the disadvantages of each technique alone and may provide a rapid and precise screening technique.


  1. 1.

    Ramirez, J. A., Ahkee, S., Summersgill, J. T., et al. (1996) Isolation ofChlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis.Ann. Intern. Med. 125, 979–982.

  2. 2.

    Saikku, P., Leinonen, M., Mattila, K., et al. (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction.Lancet 8618, 983–986.

  3. 3.

    Kuo, C.-C., Gown, A. M., Benditt, E. P., and Grayston, J. T. (1992) Detection ofChlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain.Artheroscler. Thromb. 13 1501–1504.

  4. 4.

    Kuo, C.-C., Shor, A., Campbell, L. A., Fukushi, H., Patton, D. L., and Gryaston, J. T. (1993) Demonstration ofChlamydia pneumoniae in atherosclerotic lesions of coronary arteries.J. Infect. Dis. 167, 841–849.

  5. 5.

    Grayston, J. T., Kuo, C.-C., Coulson, A. S., Campbell, L. A., Lawrence, R. D., and Ming-Jong, L. (1995)Chlamydia pneumoniae (TWAR) in atherosclerosis of the carotid artery.Circulation 93, 3397–3400.

  6. 6.

    Raulston, J. E. (1995) Chlamydial envelope components and pathogen-host cell interactions.Mol. Microbiol. 15, 607–616.

  7. 7.

    McClarty, G. (1994). Chlamydiae and the biochemistry of intracellular parasitism.Trends Microbiol. 2, 157–164.

  8. 8.

    Moulder, J. W. (1991) Interaction of chlamydiae and host cells in vitro.Microbiol. Rev. 55, 143–190.

  9. 9.

    Hatch, T. (1999) Developmental biology, inChlamydia: Intracellular Biology, Pathogenesis, and Immunity, (Stephens, R. S., eds.), American Society for Microbiology, Washington, DC, pp. 29–67.

  10. 10.

    Wolf, K., Fischer, E., and Hackstadt, T. (2000) Ultrastructural analysis of developmental events inChlamydia pneumoniae-infected cells.Infect. Immun. 68, 2379–2385.

  11. 11.

    Beatty, W. L., Morrison, R. P., and Byrne, G. I. (1994) Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis.Microbiol. Rev. 58, 686–699.

  12. 12.

    Hogan, R. J., Mathews, S. A., Mukhopadhyay, S., Summersgill, J. T., and Timms, P. (2004) Chlamydial persistence: beyong the biphasic paradigm.Infect. Immun. 72, 1843–1855.

  13. 13.

    Stephens, R. S., Kalman, S., Lammel, C., et al. (1998) Genome sequence of an obligate intracellular pathogen of humans:Chlamydia trachomatis.Science 282, 754–759.

  14. 14.

    Kalman, S., Mitchell, W., Marathe, R., et al. (1999) Comparative genomes ofChlamydia pneumoniae andC. trachomatis.Nat. Genet. 21, 385–389.

  15. 15.

    Read, T. D., Myers, G. S., Brunham, R. C., et al. (2003). Genome sequence ofChlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae.Nucleic Acids Res. 31, 2134–2147.

  16. 16.

    Belland, R. J., Zhong, G., Crane, D. D., et al. (2003). Genomic transcriptional profiling of the developmental cycle ofChlamydia trachomatis.Proc. Natl. Acad. Sci. USA 100, 8478–8483.

  17. 17.

    Gerard, H. C., Freise, J., Wang, Z., et al. (2002)Chlamydia trachomatis genes whose products are related to energy metabolism are expressed differentially in active vs. persistent infection.Microbes Infect 4, 13–22.

  18. 18.

    Molestina, R. E., Klein, J. B., Miller, R. D., Pierce, W. H., Ramirez, J. A., and Summersgill, J. T. (2002) Proteomic analysis of differentially expressedChlamydia pneumonia genes during persistent infection of HEp-2 cells.Infect. Immun. 70, 2976–2981.

  19. 19.

    Mukhopadhyay, S., Miller, R. D., and Summersgill, J. T. (2004a). Analysis of altered protein expression patterns ofChlamydia pneumoniae by an integrated Proteome-Works system.J. Proteome Res. 3, 878–883.

  20. 20.

    Nicholson, T. L., Olinger, L., Chong, K., Schoolnik, G., and Stephens, R. S. (2003) Global stage-specific gene regulation during the developmental cycle ofChlamydia trachomatis.J. Bacteriol. 185, 3179–3189.

  21. 21.

    Byrne, G. I., Ouellette, S. P., Wang, Z., et al. (2001)Chlamydia pneumoniae expresses genes required for DNA replication but not cytokines during persistent infection of HEp2 cells.Infect. Immun. 69, 5423–5429.

  22. 22.

    Mathews, S. A., George, C., Flegg, C. Stenzel, D., and Timms, P. (2001) Differential expression ofompA, ompB, pyk, nlpD and Cpn0585 genes between normal and interferon-γ treated cultures ofChlamydia pneumoniae.Microb. Pathog 30, 337–345.

  23. 23.

    Hogan, R. J., Mathews, S. A., Kutlin, A., Hammerschlag, M. R., and Timms, P. (2003) Differential expression of genes, encoding membrane proteins between acute and continuousChlamydia pneumoniae infections.Microb. Pathog. 34, 11–16.

  24. 24.

    Vandahl, B. B., Birkeland, S., Demol, H., et al. (2001) Proteome analysis of theChlamydia pneumoniae elementary body.Electrophoresis 22, 1204–1223.

  25. 25.

    Rapkiewicz, A. V., Espina, V., Petricoin, E. F., 3rd, and Liotta, L. A. (2004) Biomarkers of ovarian tumors.Eur. J. Cancer 40, 2604–2612.

  26. 26.

    Liu, A. Y., Zhang, H., Sorensen, C. M., and Diamond, D. L. (2005) Analysis of prostate cancer by proteomics using tissue specimens.J. Urol. 173, 73–78.

  27. 27.

    Gravett, M. G., Novy, M. J., Rosenfeld, R. G., et al (2004) Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers.JAMA 292, 462–469.

  28. 28.

    Mazzulli, T., Low, D. E., and Poutanen, S. M. (2005) Proteomics and severe acute respiratory syndrome (SARS): emerging technology meets emerging pathogen.Clin. Chem. 51, 6–7.

  29. 29.

    Barzaghi, D., Isbister, J. D., Lauer, K. P., and Born, T. L. (2004) Use of surface-enhanced laser desorption/ionization-time of flight to explore bacterial proteomes.Proteomics 4, 2624–2628.

  30. 30.

    Mukhopadhyay, S., Clark, A. P., Sullivan, E. D., Miller, R. D., and Summersgill, J. T. (2004b) Detailed protocol for purification ofChlamydia pneumoniae elementary bodies.J. Clin. Microbiol. 42, 3288–3290.

  31. 31.

    Hendrick, J. P. and Hartl, F. U. (1993) Molecular chaperone functions of heat-shock proteins.Annu. Rev. Biochem. 62, 349–384.

  32. 32.

    Gelinas, A. D., Toth, J., Bethoney, K. A., Langsetmo, K., Stafford, W. F., and Harrison, C. J. (2003) Thermodynamic linkage in the GrpE nucleotide exchange factor, a molecular thermosensor.Biochemistry 42, 9050–9059.

  33. 33.

    Ohta, T., Okuda, S., and Takahashi, H. (1977). Relationship between phospholipid compositions and transport activities of amino acids in Escherichia coli membrane vesicles.Biochem. Biophys. Acta 466, 44–56.

  34. 34.

    Hawrot, E. and Kennedy, E. P. (1975) Biogenesis of membrane lipids: mutants of Escherichia coli with temperature-sensitive phosphatidylserine decarboxylase.Proc. Natl. Acad. Sci. USA 72, 1112–1116.

  35. 35.

    Langley, K. E., Yaffe, M. P., and Kennedy, E. P. (1979) Biosynthesi of phospholipids inBacillus megaterium.J. Bacteriol. 140, 996–1007.

  36. 36.

    Dodt, J., Kohler, S., and Baici, A. (1988) Interaction of site-specific hirudin variants with alpha-thrombin.FEBS Lett. 229, 87–90.

  37. 37.

    Nakashima, T., Higa, H. Matsubara, H., Benson, A. M., and Yasunobu, K. T. (1966) The amino acid sequence of bovine heart cytochrome c.J. Biol., Chem. 241, 1166–1177.

  38. 38.

    Bowen, W. J. (1949). The absorption spectra and extinction coefficients of myoglobin.J. Biol. Chem. 179, 235–245.

  39. 39.

    Deutsch, H. F. (1987) Carbonic anhydrases.Int. J. Biochem. 19, 101–113.

  40. 40.

    Chin, C. C., Brewer, J. M., and World, F. (1981) The amino acid sequence of yeast enolase.J. Biol. Chem. 256, 1377–1384.

  41. 41.

    Hirayama, K., Akashi, S., Furuya, M., and Fukuhara, K. (1990) Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS.Biochem. Biophys. Res. Commun. 173, 639–646.

Download references

Author information

Correspondence to Sanghamitra Mukhopadhyay or James T. Summersgill.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mukhopadhyay, S., Jortani, S.A., Valdes, R. et al. Protein expression analysis ofChlamydia pneumoniae persistence by combined surface-enhanced laser desorption ionization time-of-flight mass spectrometry and two-dimensional polyacrylamide gel electrophoresis. Clin Proteom 2, 205–215 (2006) doi:10.1007/BF02752501

Download citation

Key Words

  • Proteomics
  • 2D gel electrophoresis
  • C. pneumoniae