Medeiros LJ, Schotte D, Gerson B. Reliability and significance of increased creatine kinase MB isoenzyme in the serum of uremic patients. Am J Clin Pathol 1987;87:103–108.
PubMed
CAS
Google Scholar
Jaffe AS, Ritter C, Meltzer V, Harter H, Roberts R. Unmasking artifactual increases in creatine kinase isoenzymes in patients with renal failure. J Lab Clin Med 1984;104:193–202.
PubMed
CAS
Google Scholar
Kloosterboer HJ, Stoker-de Vries SA, Hommes FA. The development of creatine kinase in rat skeletal muscle. Changes in isoenzyme ratio, protein, RNA and DNA during development. Enzyme 1976;21:448–458.
PubMed
CAS
Google Scholar
Lyons GE, Mühlebach S, Moser A, Masood R, Paterson BM, Buckingham ME, et al. Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development 1991;113:1017–1029.
PubMed
CAS
Google Scholar
Goto I. Creatine phosphokinase isozymes in neuromuscular disorders. Arch Neurol 1974; 31:116–119.
PubMed
CAS
Google Scholar
Apple FS, Rogers MA, Casal DC, Sherman WM, Ivy JL. Creatine kinase-MB isoenzyme adaptations in stressed human skeletal muscle of marathon runners. J Appl Physiol 1985;59:149–153.
PubMed
CAS
Google Scholar
Apple FS, Billadello JJ. Expression of creatine kinase M and B mRNAs in treadmill trained rat skeletal muscle. Life Sciences 1994;55:585–592.
Article
PubMed
CAS
Google Scholar
Yasmineh WG, Ibrahim GA, Abbasnezhad M, Awad EA. Isoenzyme distribution of creatine kinase and lactate dehydrogenase in serum and skeletal muscle in Duchenne muscular dystrophy, collagen disease, and other muscular disorders. Clin Chem 1978;24:1985–1989.
PubMed
CAS
Google Scholar
Cox DM, Quinn ZA, McDermott JC. Cell signaling and the regulation of muscle specific gene expression by myocyte enhancer-binding factor 2. Exerc Sport Sci Rev 2000;28:33–38.
PubMed
CAS
Google Scholar
Ordahl CP. Developmental regulation of sarcomeric gene expression. Cur Top Dev Biol 1992; 26:145–168.
Article
CAS
Google Scholar
Lassar AB, Buskin JN, Lockshon D, Davis RL, Apone S, Hauschka SD, et al. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 1989; 58:823–831.
Article
PubMed
CAS
Google Scholar
Ricchiuti V, Voss EM, Ney A, Odland M, Anderson PA, Apple FS. Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. Clin Chem 1998;44:1919–1924.
PubMed
CAS
Google Scholar
Hoang CD, Zhang J, Payne RM, Apple FS. Post-infarction left ventricular remodeling induces changes in creatine kinase mRNA and protein subunit levels in porcine myocardium. Am J Pathol 1997;151:257–264.
PubMed
CAS
Google Scholar
Voss EM, Sharkey SW, Gernert AE, Murakami MM, Johnston RB, Hsieh CC, Apple FS. Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium. Infarct sizing using serum profiles. Arch Pathol Lab Med 1995; 119:799–806.
PubMed
CAS
Google Scholar
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;1:156–159.
Article
Google Scholar
Ricchiuti V, Apple FS. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin Chem 1999;45:2129–2135.
PubMed
CAS
Google Scholar
Mariman EC, Broers CA, Claesen CA, Tesser GI, Wieringa B. Structure and expression of the human creatine kinase B gene. Genomics 1987;1:126–137.
Article
PubMed
CAS
Google Scholar
Pearson-White SH. Human MyoD: cDNA and deduced amino acid sequence. Nuc Ac Res 1991;19:1148.
Article
CAS
Google Scholar
Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D. Myopathy in chronic renal failure. Quart J Med 1974;43:509–524.
PubMed
CAS
Google Scholar
Diesel W, Noakes TD, Swanepoel C, Lambert M. Isokinetic muscle strength predicts maximum exercise tolerance in renal patients on chronic hemodialysis. Am J Kid Dis 1990; 16:109–114.
PubMed
CAS
Google Scholar
Diesel W, Emms M, Knight BK, Noakes TD, Swanepoel CR, van Zyl Smit R, et al. Morphologic features of the myopathy associated with chronic renal failure. Am J Kid Dis 1993; 22:677–684.
PubMed
CAS
Google Scholar
Tarasuik A, Heimer D, Bark H. Effect of chronic renal failure on skeletal and diaphragmatic muscle contraction. Am Rev Resp Dis 1992;146:1383–1388
PubMed
CAS
Google Scholar
Wright WE, Sassoon DA, Lin VK. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 1989;56:607–617.
Article
PubMed
CAS
Google Scholar