Skip to main content
  • Serum/Plasma Proteome
  • Open access
  • Published:

Selected expression profiling of full-length proteins and their variants in human plasma

Abstract

With increased interest in clinical proteomics—the comparative investigation of differential protein expression patterns for use in the diagnostic and prognostic assessment of disease states—the demand for techniques that can readily identify changes in select proteome components is greater than ever before. This article describes a targeted proteomics approach to recover and quantify C-reactive protein (CRP) directly from human plasma. CRP, a putative biomarker for cardiac health, was isolated from microliter volumes of human plasma by using novel proteomics tools that combine micro-scale affinity capture with matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) detection. Native CRP was analyzed along with serum amyloid P component (SAP) and retinol binding protein (RBP), that were intentionally targeted to generate a selected protein expression profile. A number of qualitative changes were readily observed within these profiles, including micro heterogeneity in the SAP glycan, C-terminally truncated versions of RBP, and detection of a novel truncated variant of CRP. After quantitative validation of increasing plasma CRP concentrations, the approach was applied to the analysis of eight plasma samples obtained from individuals with known medical histories. The result of the analyses are eight protein profiles, revealing increasing CRP levels that can be associated with individuals ailing from post-surgery inflammation, chronic rheumatoid arthritis, and recent acute myocardial infarction. The technique described in this article lays the foundation for selected protein profiling for use in biomarker discovery, as well as in clinical and diagnostic applications.

References

  1. Yanagisawa K, Shyr Y, Xu BJ, et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 2003;362(9382):433–439.

    Article  PubMed  CAS  Google Scholar 

  2. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 2002;359(9306):572–577.

    Article  PubMed  CAS  Google Scholar 

  3. Conrads TP, Zhou M, Petricoin EF, 3rd, Liotta L, Veenstra TD. Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn 2003; 3(4):411–420.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002; 1(11):845–867.

    Article  PubMed  CAS  Google Scholar 

  5. Diamandis EP. Point: Proteomic patterns in biological fluids: do they represent the future of cancer diagnostics? Clin Chem 2003;49(8): 1272–1275.

    Article  PubMed  CAS  Google Scholar 

  6. Mann M, Hendrickson RC, Pandey A. Analysis of Proteins and Proteomes By Mass Spectrometry. Annu Rev Biochem 2001;70:437–473.

    Article  PubMed  CAS  Google Scholar 

  7. Nelson RW, Krone JR, Bieber AL, Williams P. Mass-Spectrometric Immunoassay. Anal Chem 1995;67(7):1153–1158.

    Article  PubMed  CAS  Google Scholar 

  8. Niederkofler EE, Tubbs KA, Kiernan UA, Nedelkov D, Nelson RW. Novel mass spectrometric immunoassays for the rapid structural characterization of plasma apolipoproteins. J Lipid Res 2003;44(3):630–639.

    Article  PubMed  CAS  Google Scholar 

  9. Tubbs KA, Nedelkov D, Nelson RW. Detection and quantification of beta-2-microglobulin using mass spectrometric immunoassay. Anal Biochem 2001;289(1):26–35.

    Article  PubMed  CAS  Google Scholar 

  10. Kiernan UA, Tubbs KA, Gruber K, et al. High-Throughput Protein Characterization Using Mass Spectrometric Immunoassay. Anal Biochem 2002;301(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  11. Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, Nelson RW. Comparative phenotypic analyses of human plasma and urinary retinol binding protein using mass spectrometric immunoassay. Biochem Biophys Res Commun 2002;297(2):401–405.

    Article  PubMed  CAS  Google Scholar 

  12. Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, Nelson RW. Detection of novel truncated forms of human serum amyloid A protein in human plasma. FEBS Lett 2003; 537(1–3):166–170.

    Article  PubMed  CAS  Google Scholar 

  13. Kiernan UA, Tubbs KA, Nedelkov D, Niederkofler EE, McConnell E, Nelson RW. Comparative urine protein phenotyping using mass spectrometric immunoassay. J Proteome Res 2003;2(2):191–197.

    Article  PubMed  CAS  Google Scholar 

  14. Niederkofler EE, Tubbs KA, Gruber K, et al. Determination of beta-2 microglobulin levels in plasma using a high-throughput mass spectrometric immunoassay system. Anal Chem 2001;73(14):3294–3299.

    Article  PubMed  CAS  Google Scholar 

  15. Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB. Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet 1997;349(9050): 462–466.

    Article  PubMed  CAS  Google Scholar 

  16. Liuzzo G, Baisucci LM, Gallimore JR, et al. Enhanced inflammatory response in patients with preinfarction unstable angina. J Am Coll Cardiol 1999;34(6):1696–1703.

    Article  PubMed  CAS  Google Scholar 

  17. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH. Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 1998;98(8):731–733.

    PubMed  CAS  Google Scholar 

  18. Tommasi S, Carluccio E, Bentivoglio M, et al. C-reactive protein as a marker for cardiac ischemic events in the year after a first, uncomplicated myocardial infarction. Am J Cardiol 1999;83(12):1595–1599.

    Article  PubMed  CAS  Google Scholar 

  19. Rost NS, Wolf PA, Kase CS, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack: the Framingham study. Stroke 2001;32(11): 2575–2579.

    PubMed  CAS  Google Scholar 

  20. Curb JD, Abbott RD, Rodriguez BL, et al. C-reactive protein and the future risk of thromboembolic stroke in healthy men. Circulation 2003;107(15):2016–2020.

    Article  PubMed  Google Scholar 

  21. Kuller LH, Tracy RP, Shaten J, Meilahn EN. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am J Epidemiol 2004;144(6):537–547.

    Google Scholar 

  22. Ferreiros ER, Boissonnet CP, Pizarro R, et al. Independent prognostic value of elevated C-reactive protein in unstable angina. Circulation 1999;100(19):1958–1963.

    PubMed  CAS  Google Scholar 

  23. Kushner I. The phenomenon of the acute phase response. Ann N Y Acad Sci 1982;389: 39–48.

    Article  PubMed  CAS  Google Scholar 

  24. Zimmerman MA, Selzman CH, Cothren C, Sorensen AC, Raeburn CD, Harken AH. Diagnostic implications of C-reactive protein. Arch Surg 2003;138(2):220–224.

    Article  PubMed  Google Scholar 

  25. Kushner I. C-reactive protein and atherosclerosis. Science 2002;297(5581):520–521.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall W. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiernan, U.A., Nedelkov, D., Tubbs, K.A. et al. Selected expression profiling of full-length proteins and their variants in human plasma. Clin Proteom 1, 7–16 (2004). https://doi.org/10.1385/CP:1:1:007

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CP:1:1:007

Key Words