Skip to main content

New targets for an old drug

A chemical proteomics approach to unraveling the molecular mechanism of action of methotrexate

Abstract

Methotrexate has been a clinical agent used in cancer, immunosuppression, rheumatoid arthritis and other highly proliferative diseases for many years, yet its underlying molecular mechanism of action in these therapeutic areas is still unclear. We present a chemical proteomics approach that uses ultra-sensitive mass spectrometry coupled to an inverse protein-ligand docking computational technique to unravel the mechanism of action of this drug. Using methotrexate tethered to a solid support we were able to isolate a signficant number of proteins. We effectively captured a large portion of the de novo purine metaolome and propose a pathway architecture similar to that seen in signaling pathways and consistent with substrate channeling. More importantly, we were able to capture protein targets that could potentially provide new insights into the mechanism of action of methotrexate in rheumatoid arthritis and immunosuppression. The application of this approach to other drugs and drug candidates may facilitate the prediction of unknown and secondary therapeutic target proteins and those related to the side effects and toxicity. These results demonstrate that this proteomics technology could play an important role in drug discovery and development since it allows monitoring of the interactions between a drug and the protein content of a cell.

References

  1. 1.

    Arlington SA: Industrialization of R&D in the 21st century. ECPI-Barcelona 2001, PricewatersCoopers

  2. 2.

    CHI, Pharmacogenomics/Pharmacoproteomics, Europe. May 2002, Munich, Germany.

  3. 3.

    Leung D, Hardouin C, Boger DL, Cravatt BF. Discovering potent and selective resersible inhibitors of enzymes in complex proteomes. Nat Biotechnol. 2003;21(6):687–691.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Kim E, Park JM. Identification of Novel Target Proteins of Cyclic GMP Signaling Pathways Using Chemical Proteomics. J Biochem Mol. Biol. 2003;36(3):299–304.

    PubMed  CAS  Google Scholar 

  5. 5.

    Graves PR, Kwiek JJ, Fadden P, et al. Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol Pharmacol. 2002;62(6):1364–1372.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Ho, Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Sacharomyces cerevisiae by mass spectrometry. Nature 2002;415(6868):180–183.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Chen YZ, Zhi DG. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 2001;43(2):217–226.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Chen YZ, Ung CY. Prediction of potential toxicity and side effect protein targets of small molecule by a ligand-protein inverse docking approach. J Mol Graph Model 2001;20(3): 199–218.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Smith-Schmidt T. Banking on Structures. BioIT World 2002;1 8.

  10. 10.

    Clark RD, Strizhev A, Leonard JM, Blake JF, Matthew JB. Consensus scoring for ligand/protein interactions. J Mol Graph Model. 2002; 20(4): 281–295.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Saravanan V, Hamilton J. Advances in the treatment of rheumatoid arthritis: old versus new therapies. Expert Opin Pharmacother 2002;3(7):845–856.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Allison AC. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 2000;47(2–3):63–83.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Weber G, Prajda N. Targeted and non-targeted actions of anti-cancer drugs. Adv Enzyme Regul 1994;34:71–89.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Cronstein BN. The mechanism of action of methotrexate. Rheum Dis Clin North Am 1997; 23(4):739–755.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Costi MP, Ferrari S. Update on antifolate drugs targets. Curr Drug Targets. 2001;2(2): 135–166.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Kaye SB. New antimetabolites in cancer chemotherapy and their clinical impact. Br J Cancer 1998;78 Suppl 3:1–7.

    PubMed  CAS  Google Scholar 

  17. 17.

    Kllergra CJ, Drake JC, Jolivet J, Chabner BA. Inhibition of phosphoribosylaminoimidazole-carboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Natl Acad Sci USA 1985;82(15):4881–4885.

    Article  Google Scholar 

  18. 18.

    Prabhu V, Chatson KB, Lui H, Abrams GD, King J. Effects of sulfanilamide and methotrexate on 13C fluxes through the glycine decarboxylase/serine hydroxymethyltransferase enzyme system in arabidopsis. Plant Physiol 1998;116:137–144.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Aghi M, Kramm CM, Breakefield XO. Folylpolyglutamyl synthetase gene transfer and glioma antifolate sensitivity in culture and in vivo. J Natl Cancer Inst 1999;91(14):1233–1241.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Cole PD, Kamen BA, Gorlick R, et al. Effects of overexpression of γ-Glutamyl hydrolase on methotrexate metabolism and resistance. Cancer Res 2001;61(11):4599–4604.

    PubMed  CAS  Google Scholar 

  21. 21.

    Sierra EE, Goldman ID. Recent advances in the understanding of the mechanism of membrane transport of folates and antifolates. Semin Oncol 1999;26(2 Suppl 6):11–23.

    PubMed  CAS  Google Scholar 

  22. 22.

    Mauritz R, Peters GJ, Priest DG, et al. Multiple mechanisms of resistance to methotrexate and novel antifolates in human CCRF-CEM leukemia cells and their implications for folate homeostasis. Biochem Pharmacol 2002;63(2): 105–115.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Sawaya MR, Kraut J. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 1997 Jan 21; 36(3):586–603.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Fritz TA, Tondi D, Finer-Moore JS, Costi MP, Stroud RM. Predicting and harnessing protein flexibility in the design of species-specific inhibitors of thymidylate synthase. Chem Biol 2001;8(10):981–995.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Almassy RJ, Janson CA, Kan CC, Hostomska Z. Structures of apo and complexed Escherichia coli glycinamide ribonucleotide transformylase. Proc Natl Acad Sci USA 1992; 89(13):6114–6118.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Rajagopalan PT, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc Natl Acad Sci U S A. 2002;99(21):13481–13486.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Gangjee A, Yu J, McGuire JJ, Cody V, Galitsky N, Kisliuk RL, Queener SF. Design, synthesis, and X-ray crystal structure of a potent dual inhibitor of thymidylate synthase and dihydrofolate reductase as an antitumor agent. J Med Chem 2000;43(21):3837–3851.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Galivan JH, Maley GF, Maley F. Factors affecting substrate binding in Lactobacillus casei thymidylate synthetase as studied by equilibrium dialysis. Biochemistry. 1976;15(2):356–362.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Smith JL. Glutamide PRPP and amidotransferanse: snapshots of an enzyme in action. Curr Opin Struct Biol 1998;8(6):686–694.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Chen S, Tomchick DR, Wolle D, et al. Mechanism of the synergistic end-product regulation of Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase by nucleotides. Biochemistry 1997;36(35):10718–10726.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Sant ME, Lyons SD, Phillips L, Christopherson RI. Antifolates induce inhibition of amido phosphoribosyltransferase in leukemia cells. J Biol Chem 1992;267(16):11038–11045.

    PubMed  CAS  Google Scholar 

  32. 32.

    Schoettle SL, Christopherson RI. Inhibition of murine amido phosphoribosyltransferase by folate derivatives. Adv Exp Med Biol 1994; 370:151–154.

    PubMed  CAS  Google Scholar 

  33. 33.

    Genestier L, Paillot R, Fournel S, Ferraro C, Miossec P, Revillard JP. Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest 1998;102(2):322–328.

    PubMed  CAS  Article  Google Scholar 

  34. 34.

    Fairbanks LD, Ruckemann, K, Qiu Y, Hawrylowicz CM, Richards DF, Swaminathan R, Kirschbaum B, Simmonds HA. Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: a metabolic basis for efficacy in rheumatoid arthritis? Biochem J 1999;342: (Pt 1):143–152.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Jain J, Almquist SJ, Shlyakhter D, Harding MW. VX-497: a novel, selective IMPDH inhibitor and immunosuppressive agent. J Pharm Sci 2001;90(5):625–637.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Prosise GL, Luecke H. Crystal structures of Tritrichomonasfoetus inosine monophosphate dehydrogenase in complex with substrate, cofactor and analogs: a structural basis for the random-in ordered-out kinetic mechanism. J Mol Biol. 2003;326(2):517–527.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Sintchak MD, Fleming MA, Futer O, Raybuck SA, Chambers SP, Caron PR, Murcko MA, Wilson KP. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell. 2004;85(6):921–930.

    Article  Google Scholar 

  38. 38.

    Weber G, Nagai M, Natsumeda Y, Ichikawa S, et al. Regulation of de novo and salvage pathways in chemotherapy. Adv Enzyme Regul 1991;31:45–67.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Weber G, Prajda N. Targeted and non-targeted actions of anti-cancer drugs. Adv Enzyme Regul 1994;34:71–89.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Gordon RB, Keough DT, Emmerson BT. HPRT-deficiency associated with normal PRPP concentration and APRT activity. J Inherit Metab Dis 1987;10(1):82–88.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Fung KP, Lam WP, Choy YM, Lee CY Effect of methotrexate on the intracellular phosphoribosyl pyrophosphate level and glucose transport of Ehrlich ascites tumor cells in vitro. Oncology 2004;53(1):27–30.

    Google Scholar 

  42. 42.

    Balendiran GK, Molina JA, Xu Y, et al. Ternary complex structure of human HGPRTase, PRPP, Mg2+, and the inhibitor HPP reveals the involvement of the flexible loop in substrate binding. Protein Sci 1999;8(5):1023–1031.

    PubMed  CAS  Google Scholar 

  43. 43.

    van Ede AE, Laan RF, Blom HJ, et al. Homocysteine and folate status in methotrexate-treated patients with rheumatoid arthritis. Rheumatology (Oxford) 2002;41(6):658–665.

    Article  Google Scholar 

  44. 44.

    Cronk JD, Endrizzi JA, Alber, T. High-resolution structures of the bifunctional enzyme and transcriptional coactivator DCoH and its complex with a product analogue. Protein Sci 2004;5(10):1963–1972.

    Article  Google Scholar 

  45. 45.

    Klinov SV, Chebotareva NA, Sheiman BM, Birinberg EM, Kurganov BI. Interaction of muscle glycogen phosphorylase B with methotrexate, folic and folinic acids. Bioorg Khim 1987;13(7):908–914.

    PubMed  CAS  Google Scholar 

  46. 46.

    Zographos SE, Oikonomakos NG, Tsitsanou KE, et al. The structure of glycogen phosphorylase B with an alkyldihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure 1997;5(11):1413–1125.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Johansson NG, Eriksson S. Structure-activity relationships for phosphorylation of nucleotide analogs to monophosphates by nucleoside kinases. Acta Biochim Pol 2004;43(1):143–160.

    Google Scholar 

  48. 48.

    Sabini E, Ort S, Monnerjahn C, Konrad M, Lavie A. Structure of human dCk suggests strategies to improve anticancer and antiviral therapy. Nat Struct Biol. 2003;10(7): 513–519.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Roberts D, Peck C. Effect of methotrexate and 1-β-d-arabinofuranosylcytosine on pools of deoxyribonucleoside triphosphates in L1210 ascites cells. Cancer Res. 1981;41(2):505–510.

    PubMed  CAS  Google Scholar 

  50. 50.

    Mikkelsen NE, Johansson K, Karlsson A, Knecht W, Andersen G, Piskur J, Munch-Petersen B, Eklund H. Structural basis for feedback inhibition of the deoxyribonucleoside salvage pathway: studies of the Drosophila deoxyribonucleoside kinase. Biochemistry. 2003;42(19):5706–5712.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Johansson K, Ramaswamy S, Ljungcrantz C, Knecht W, Piskur J, Munch-Petersen B, Eriksson S, Eklund H. Structural basis for substrate specificities of cellular deoxyribonucleoside kinases. Nat Struct Biol. 2001;8(7):616–620.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Li MH, Kowk F, Chang WR, et al. Crystal structure of brain pyridoxal kinase, a novel member of the ribokinase superfamily. J Biol Chem 2002;277(48):46385–46390.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Ubbink JB, Bissbort S, Vermaak WJ, Delport R. Inhibition of pyridoxal kinase by methylxanthines. Enzyme 1990;43(2):72–79.

    PubMed  CAS  Google Scholar 

  54. 54.

    Jones RJ, Twelves CJ. Pemetrexed: a multitargeted antifolate (ALIMTA, LY-231514). Expert Rev Anticancer Ther 2002;2(1):13–22.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Aherne GW, Hardcastle A, Ward E, Dobinson D, Crompton T, Valenti M, Brunton L, Jackman AL. Pharmacokinetic/pharmacodynamic study of ZD9331, a nonpolyglutamatable inhibitor of thymidylate synthase, in a murine model following two curative administration schedules. Clin Cancer Res 2001;7(9):2923–2930.

    PubMed  CAS  Google Scholar 

  56. 56.

    Sakai Y, Furuichi M, Takahashi M, Mishima M, Iwai S, Shirakawa M, Nakabeppu Y: A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1. J Biol Chem 2002; 277(10):8579–8587.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Fisher DL, Safrany ST, McLennan AG, Cartwright JL. Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate. J Biol Chem 2002;277(49):47313–47317.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Gabelli SB, Bianchet MA, Bessman MJ, Amzel LM. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Biol 2001;8(5):467–472.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Gabelli SB, Bianchet MA, Ohnishi Y, Ichikawa Y, Bessman MJ, Amzel LM. Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a Nudix hydrolase. Biochemistry 2002;41:9279–9285.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Chen ZD, Dixon JE, Zalkin H. Cloning of a chicken liver cDNA encoding 5-aminoimidazole ribonucleotide carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase by functional complementation of Escherichia coli pur mutants. Proc Natl Acad Sci USA 1990;87(8):3097–101.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Mathews II, Kappock TJ, Stubbe J, Ealick SE. Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway. Structure Fold Des 1999;7(11):1395–1406.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Levdikov VM, Barynin VV, Grebenko AI, Melik-Adamyan WR, Lamzin VS, Wilson KS. The structure of SAICAR synthase: an enzyme in the de novo pathway of purine nucleotide biosynthesis. Structure 1998;6(3):363–376.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Kan JL, Moran RG. Analysis of a mouse gene encoding three steps of purine synthesis reveals use of an intronic polyadenylation signal without alternative exon usage. J Biol Chem 1995;270(4):1823–1832.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Brodsky G, Barnes T, Bleskan J, Becker L, Cox M, Patterson D. The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome. Hum Mol Genet 1997;6(12):2043–2050.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    Wang W, Kappock TJ, Stubbe J, Ealick SE. X-ray crystal structure of glycinamide ribonucleotide synthetase from Escherichia coli. Biochemistry 1998;37(45):15647–15662.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Bera AK, Chen S, Smith JL, Zalkin H. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile. J Bacteriol 2000;182(13): 3734–3739.

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Li C, Kappock TJ, Stubbe J, Weaver TM, Ealick SE. X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 A resolution. Structure Fold Des 1999;7(9):1155–1166.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Levdikov VM, Barynin VV, Grebenko AI, Melik-Adamyan WR, Lamzin VS, Wilson KS. The structure of SAICAR synthase: an enzyme in the de novo pathway of purine nucleotide biosynthesis. Structure 1998;6(3):363–376.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Hara T, Kato H, Katsube Y, Oda J. A pseudomichaelis quaternary complex in the reverse reaction of a ligase: structure of Escherichia coli B glutathione synthetase complexed with ADP, glutathione, and sulfate at 2.0 A resolution. Biochemistry 2004;35(37):11967–11974.

    Article  Google Scholar 

  70. 70.

    Kniewel R, Buglino JA, Lima CD. Structure of the Periplasmic Divalent Cation Tolerance Protein Cuta From Archaeoglobus Fulgidus. 2003; in press.

  71. 71.

    Wolan DW, Greasley SE, Wall MJ, Benkovic SJ, Wilson IA. Structore of avian AICAR transformylase with a multisubstrate adduct inhibitor beta-DADF identifies the folate binding site. Biochemistry 2003;42(37):10904–10914.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Sun X, Cross JA, Bognar AL, Baker EN, Smith CA. Folate-binding triggers the activation of folylpolygutamate synthetase. J Mol Biol 2001;310(5):1067–1078.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Li H, Ryan TJ, Chave KJ, Van Roey P. Three-Dimensional Structure of Human Gamma-Glutamyl Hydrolase. A Class I Glutamine Amidotransferase Adapted for a Complex Substrate. J Bio Chem 2002;277(27):24522–24529.

    Article  CAS  Google Scholar 

  74. 74.

    Scarsdale JN, Radaev S, Kazanina G, Schirch V, Wright HT. Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate. J Mol Biol 2002;296(1):155–168.

    Article  CAS  Google Scholar 

  75. 75.

    Stover P, Schirch V. 5-Formyltetrahydrofolate polyglutamates are slow tight binding inhibitors of serine hydroxymethyltransferase. J Biol Chem 1991;266(3):1543–1350.

    PubMed  CAS  Google Scholar 

  76. 76.

    Sierra EE, Goldman ID. Recent advances in the understanding of the mechanism of membrane transport of folates and antifolates. Semin Oncol 1999;262(2 Suppl 6):11–23.

    Google Scholar 

  77. 77.

    Perham RN. Swinging arms and swining domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu Rev Biochem 2000;69:961–1004.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Krahn JM, Kim JH, Burns MR, Parry RJ, Zalkin H, Smith JL. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry 1997;36(37):11061–11068.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Haggie PM, Verkman AS. Diffusion of tricarboxylic acid cycle enzymes in the mitochrondrial matrix in vivo. Evidence for restricted mobility of a multienzyme complex. J Biol Chem 2002;277(43):40782–40788.

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Bera AK, Chen S, Smith JL, Zalkin H. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile. J Bacteriol 2000;182(13):3734–3739.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Appling DR. Compartmentation of folatemediated one-carbon metabolism in eukaryotes. FASEB J 1991;5(12):2645–2651.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Leticia M. Toledo-Sherman or Michael F. Moran.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toledo-Sherman, L.M., Desouza, L., Hosfield, C.M. et al. New targets for an old drug. Clin Proteom 1, 45–67 (2004). https://doi.org/10.1385/CP:1:1:045

Download citation

Key Words

  • Methotrexate
  • targets
  • mechanism of action
  • chemical proteomics
  • pharmaco-proteomics
  • metabolome
  • inverse docking
  • substrate channeling