Skip to main content

Advertisement

Antiproliferative heparan sulfate inhibiting hyaluronan and transforming growth factor-β expression in human lung fibroblast cells

Abstract

The objective of this study was to examine the effects of heparan sulfate (HS) on factors involved in the remodeling of connective tissue observed in patients with fibrotic respiratory disorders such as asthma. A suitable working model is to stimulate human fetal lung fibroblasts in vitro with structurally different forms of HS. Highly sulfated and iduronic acid (IdoUA)-rich HS specifically decreased cell proliferaton, production of jyaluronan (HA), transforming growth factor (TGF)-β1, and TFF-β-induced α-smooth muscle actin but did not affect the overall proteoglycan production in the cells. These repressed factors are suggested to play a critical role in the early stages of remodeling and myofibroblast activation. Low sulfated and IdoUA-poor HS did not display any effects on these factors. Furthermore, analysis of the protein expression pattern by two-dimensional gel electrophoresis revealed a 70% increased expression of annexin II, which has previously been shown to have a high affinity for both heparin and HS. Heat-shock protein 27 and arsenite translocating factor, both involved in actin organization and polymerization, were also increased in the HS-stimulated cells. Thus, the reduced expression of HA and TGF-β1, both important in the development of fibrosis, seems to be mediated by pecific changes in protein expression of the fibroblast. The observed inhibition of cell proliferation, HA, and TGF-β1 allows speculation of highly sulfated HS as a antifibrotic candidate in the early stage of remodeling.

References

  1. 1.

    Iozzo, R.V. (2001). Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J. Clin. Invest. 108:165–167.

  2. 2.

    Ahmed, T., Garrigo, J., and Danta I. (1993). Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N. Engl. J. Med. 329:90–95.

  3. 3.

    Lindahl, U., Backstrom, G., Thunberg, L., and Leder, I.G. (1980). Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc. Natl. Acad. Sci. USA 77:6551–6555.

  4. 4.

    Culley F.J., Fadlon, E.J., Kirchem, A., Wiliams, T.J., Jose, P.J., and Pease, J.E. (2003). Proteoglycans are potent moldulators of the biological responses of eosinophils to chemokines. Eur. J. Immunol. 33:1302–1310.

  5. 5.

    Garrigo, J., Danta, I., and Ahmed, T. (1996). Time course of the protective effect of inhaled heparin on exercise-induced asthma. Am. J. Respir. Crit. Care Med. 153:1702–1707.

  6. 6.

    Caughey, G.H. (2003). Buidling a better heparin. Am. J. Respir. Cell Mol. Biol. 28:129–132.

  7. 7.

    Lever, R. and Page, C. (2001). Glycosamino-glycans, airways inflammation and bronchial hyperresponsiveness. Pulm. Pharmacol. Ther. 14:249–254.

  8. 8.

    Jeffery, P.K. (2001). Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 164(Pt. 2):S28-S38.

  9. 9.

    Davies, D.E., Wicks, J., Powell, R.M., Puddicombe, S.M., and Holgate, S.T. (2003). Airway remodeling in asthma: new insights. J. Allergy Clin. Immunol. 111:215–225.

  10. 10.

    Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C., and Brown, R.A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3:349–363.

  11. 11.

    Larsen, K., Tufvesson, E., Malmstrom, J., Morgelin, M., Wildt, M., Andersson, A., et al. (2004). Presence of activated mobile fibroblasts in bronchoalveolar lavage from patients with mild asthma. Am. J. Respir. Crit. Care Med. 170:1049–1056.

  12. 12.

    Malmstrom, J., Larsen, K., Hansson, L., Lofdahl, C.G., Norregard-Jensen, O., Marko-Varga, G., et al. (2002). Proteoglycan and proteome profiling of central human pulmonary fibrotic tissue utilizing miniaturized sample preparation: a feasibility study. Proteomics 2:394–404.

  13. 13.

    Elenius, K., Vainio, S., Laato, M., Salmivirta, M., Thesleff, I., and Jalkanen, M. (1991). Induced expression of syndecan in healing wounds. J. Cell Biol. 114:585–595.

  14. 14.

    Bernfield M., Gotte, M., Park, P.W., Reizes, O., Fitzgerald, M.L., Lincecum, J., et al. (1999). Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68:729–777.

  15. 15.

    Malmstrom, J., Westergren-Thorsson, G., and Marko-Varga, G. (2001). A proteomic approach to mimic fibrosis disease evolvement by an in vitro cell line. Electrophoresis 22:1776–1784.

  16. 16.

    Malmstrom, J., Larsen, K., Malmstrom, L., Tufversson, E., Parker, K., Marchese, J., et al. (2004). Proteome annotations and identifications of the human pulmonary fibroblast. J. Proteome Res. 3:525–537.

  17. 17.

    Fransson, L.A., Nieduszynski, L.A., and Sheehan, J.K. (1980). Interaction between heparan sulphate chains. I. A gel chromatographic, light-scattering and structural study of aggregating and non-aggregating chains. Biochim. Biophys. Acta 630:287–300.

  18. 18.

    Arroyo-Yanguas, Y., Cheng, F., Isaksson, A., Fransson, L.A., Malmstrom, A., and Westergren-Thorsson, G. (1997). Binding, internalization, and degradation of antiproliferative heparan sulfate by human embryonic lung fibroblasts. J. Cell. Biochem. 64:595–604.

  19. 19.

    Fransson, L.A., Sjoberg, I., and Havsmark, B. (1980). Structural studies on heparan sulphates. Characterization of oligosaccharides; obtained by periodate oxidation and alkaline elimination. Eur. J. Biochem. 106:59–69.

  20. 20.

    Westergren-Thorsson, G., Onnervik, P.O., Fransson, L.A., and Malmstrom, A. (1991). Proliferation of cultured fibroblasts is inhibited by L-iduronate-containing glycosamino-glycans. J. Cell. Physiol. 147:523–530.

  21. 21.

    Westergren-Thorsson, G., Persson, S., Isaksson, A., Onnervik, P.O., Malmstrom, A., and Fransson, L.A. (1993). L-iduronate-rich glycosaminoglycans inhibit growth of normal fibroblasts independently of serum or added growth factors. Exp. Cell Res. 206:93–99.

  22. 22.

    Westergren-Thorsson, G., Sarnstrand, B., Fransson, L.A., and Malmstrom, A. (1990). TGF-beta enhances the production of hyaluronan in human lung but not in skin fibroblasts. Exp. Cell Res. 186:192–195.

  23. 23.

    Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68:850–858.

  24. 24.

    Cheng, F., Petersson, P., Arroyo-Yanguas, Y., and Westergren-Thorsson, G. (2001). Differences in the uptake and nuclear localization of anti-proliferative heparan sulfate between human lung fibroblasts and human lung carcinoma cells. J. Cell. Biochem. 83:597–606.

  25. 25.

    Malmstrom, L., Malmstrom, J., Marko-Varga, G., and Westergren-Thorsson, G. (2002). Proteomic 2DE database for spot selection, automated annotation, and data analysis. J. Proteome Res. 1:135–138.

  26. 26.

    Westergren-Thorsson, G., Hernnas, J., Sarnstrand, B., Oldberg, A., Heinegard, D., and Malmstrom, A. (1993). Altered expression of small proteoglycans, collagen, and transforming growth factor-beta 1 in developing bleomycin-induced pulmonary fibrosis in rats. J. Clin. Invest. 92:632–637.

  27. 27.

    Kim, S.J., Denhez, F., Kim, K.Y., Holt, J.T., Sporn, M.B., and Roberts, A.B. (1989). Activation of the second promoter of the transforming growth factor-beta 1 gene by transforming growth factor-beta 1 and phorbol ester occurs through the same target sequences. J. Biol. Chem. 264:19373–19378.

  28. 28.

    Hausser, H., Groning, A., Hasilik, A., Schonherr, E., and Kresse, H. (1994). Selective inactivity of TGF-beta/decorin complexes. FEBS Lett. 353:243–245.

  29. 29.

    Kolb, M., Margetts, P.J., Sime, P.J., and Gauldie, J. (2001). Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L1327-L1334.

  30. 30.

    Munz, B., Gerke, V., Gillitzer, R., and Werner, S. (1997). Differential expression of the calpactin I subunits annexin II and p11 in culture keratinocytes and during wound repair. J. Invest. Dermatol. 108:307–312.

  31. 31.

    Gerke, V. and Moss, S.E. (2002). Annexins: from structure of function. Physiol. Rev. 82:331–371.

  32. 32.

    Fitzpatrick, S.L., Kassam, G., Manro, A., Braat, C.E., Louie, P., and Waisman, D.M. (2000). Fucoidan-dependent conformational changes in annexin II tetramer. Biochemistry 39:2140–2148.

  33. 33.

    Dudas, J., Ramadori, G., Knittel, T., Neubauer, K., Raddatz, D., Egedy, K., et al. (2000). Effect of heparin and liver heparan sulphate on interaction of HepG2-derived transcription factors and their cis-acting elements: altered potential of hepatocellular carcinoma heparan sulphate. Biochem. J. 350:245–251.

  34. 34.

    Ibitayo, A.I., Sladick, J., Tuteja, S., Louis-Jacques, O., Yamada, H., Groblewski, G., et al. (1999). HSP27 in signal transduction and association with contractile proteins in smooth muscle cells. Am. J. Physiol. 277:G445-G454.

  35. 35.

    Adler, V., Yin, Z., Fuchs, S.Y., Benezra, M., Rosario, L., Tew, K.D., et al. (1999). Regulation of JNK signaling by GSTp. EMBO J. 18:1321–1334.

  36. 36.

    Graven, K.K. and Farber, H.W. (1998). Endothelial cell hypoxic stress proteins. J. Lab. Clin. Med. 132:456–463.

  37. 37.

    Shi, H., Asher, C., Chigaev, A., Yung, Y., Reuveny, E., Seger, R., et al. (2002). Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK-mediated phosphorylation. J. Biol. Chem. 277:13539–13547.

  38. 38.

    Saul, F.A., Arie, J.P., Vulliez-le Normand, B., Kahn, R., Betton, J.M., and Bentley, G.A. (2004). Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-proloyl isomerase with chaperone activity. J. Mol. Biol. 335:595–608.

  39. 39.

    Patterson, C.E., Schaub, T., Coleman, E.J., and Davis, E.C. (2000). Developmental regulation of FKBP65. An ER-localized extracellular matrix binding-protein. Mol. Biol. Cell 11:3925–3935.

  40. 40.

    Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwarzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J. Cell Biol. 146:843–854.

Download references

Author information

Correspondence to Kristoffer Larsen.

Rights and permissions

Reprints and Permissions

About this article

Key Words

  • Annexin II
  • proteoglycan
  • cell growth
  • fibroblast
  • heparan sulfate
  • heat shock protein 27
  • hyaluronan
  • two-dimensional gel electrophoresis
  • transforming growth factor-β