Skip to main content

Mass determination of major plasma proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

Abstract

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) serves as a rapid and accurate means to determine masses of proteins independent of their shapes or interactions with other molecules. It provides one of the most fundamental characterizations of major plasma proteins. Purified proteins in saline or serum specimens were prepared for analysis by dilution, mixing with a solution of sinapinic acid, and drying on a target plate. Specimens were analyzed in a linear TOF mode with external calibration. Analyses of 24 purified plasma proteins showed predominance of singly charged ions with lesser amounts of dimer and doubly charged monomer, and provided measured masses for these proteins. A number of proteins, including albumin, transferrin, apolipoproteins A-I, A-II, C-I, C-II, and C-III, and prealbumin, could be analyzed directly in serum with appropriate dilution. Measured values for masses of major plasma proteins will assist in analysis of serum and plasma. It is possible to analyze a number of components by MALDI-TOF/MS directly in diluted serum. Extremely simple sample preparation techniques may be useful in analyzing structural variation of several major plasma proteins, particularly those with masses <30 kDa, including a number of apolipoproteins and markers of nutritional status or acute phase responses.

References

  1. 1

    Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., and Yoshida, T. (1988) Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153.

    Article  CAS  Google Scholar 

  2. 2

    Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, Anal. chem. 60, 2299–2301.

    PubMed  Article  CAS  Google Scholar 

  3. 3

    Chaurand, P., Sanders, M. E., Jensen, R. A., and Caprioli, R. M. (2004) Proteomics in diagnostic pathology; profiling and imaging proteins directly in tissue sections. Am. J. Pathol. 165, 1057–1068.

    PubMed  CAS  Google Scholar 

  4. 4

    Reyzer, M. L. and Caprioli, R. M. (2005) MALDI mass spectrometry for direct tissue analysis: a new tool for biomarker discovery. J. Proteome Res. 4, 1138–1142.

    PubMed  Article  CAS  Google Scholar 

  5. 5

    Chait, B. T. and Kent, S. B. (1992) Weighing naked proteins: practical, high-accuracy measurement of peptides and proteins. Science 257, 1885–1894.

    PubMed  Article  CAS  Google Scholar 

  6. 6

    Strupat, K. (2004) Molecular weight determination of peptides and proteins by ESI and MALDI. Meth. Enzymol. 405, 1–36.

    Google Scholar 

  7. 7

    Karas, M., Bahr, U., and Zeng-Stahl, J.-R. (1995) Factors affecting the choice of matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of glycoproteins. J. Mass. Spectrom. Rapid Commun. Mass Spectrom. S207–S209.

  8. 8

    Sottani, C., Fiorentino, M., and Minoia, C. (1997) Matrix performance in matrix-assisted laser desorption/ionization for molecular weight determination in sialyl and non-sialyl oligosaccharide proteins. Rapid Commun. Mass. Spectrom. 11, 907–913.

    PubMed  Article  CAS  Google Scholar 

  9. 9

    Sekiya, S., Wada, Y., and Tanaka, K. (2005) Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 77, 4962–4968.

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Belgacem, O., Buchacher, A., Pock, K., et al. (2002) Molecular mass determination of plasma-derived glycoproteins by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with internal calibration. J. Mass. Spectrom. 37, 1118–1130.

    PubMed  Article  CAS  Google Scholar 

  11. 11

    Jimenez, C. R. (2005) Batch introduction techniques. Meth. Enzymol. 405, 36–49.

    PubMed  CAS  Google Scholar 

  12. 12

    Hortin, G. L., Meilinger, B., and Drake, S. K. (2004) Size-selective extraction of peptides from urine for mass spectrometric analysis. Clin. Chem. 50, 1092–1095.

    PubMed  Article  CAS  Google Scholar 

  13. 13

    Tang, N., Tornatore, P., and Weinberger, S. R. (2004) Current developments in SELDI affinity technology. Mass Spectrom. Rev. 23, 34–44.

    PubMed  Article  CAS  Google Scholar 

  14. 14

    Simpkins, F., Czechowicz, J. A., Liotta, L., and Kohn, E. C. (2005) SELDI-TOF mass spectrometry for cancer biomarker discovery and serum proteomic diagnostics. Pharmacogenomics 6, 647–653.

    PubMed  Article  CAS  Google Scholar 

  15. 15

    Haag, A. M., Chaiban, J., Johnston, K. H., and Cole, R. B. (2001) Monitoring of immune response by blood serum profiling using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass. Spectrom. 36, 15–20.

    PubMed  Article  CAS  Google Scholar 

  16. 16

    Viallaneuva, J., Philip, J., Entenberg, D., et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem. 76, 1560–1570.

  17. 17

    Brewer, H. B., Jr., Ronan, R., Meng, M., and Bishop, C. (1986) Isolation and characterization of apolipoproteins A-I, A-II, and A-IV. Methods Enzymol. 128, 223–246.

    PubMed  CAS  Google Scholar 

  18. 18

    Rossi, L., Martin, B., Hortin, G. L., et al. Inflammatory protein profile during systemic high dose interleukin-2 administration. Proteomics 6, 709–720.

  19. 19

    Sei, K., Nakano, M., Kinoshita, M., Masuko, T., and Kakehi, K. (2002) Collection of α1 glycoprotein molecular species by capillary electrophoresis and the analysis of their molecular masses and carbohydrate chains: Basic studies on the analysis of glycoprotein glycoforms. J. Chrom. A. 958, 273–281.

    Article  CAS  Google Scholar 

  20. 20

    Hortin, G. L. (2006) The MALDI TOF mass spectrometric view of the plasma proteome and peptidome. Clin. Chem., Epub ahead of print.

  21. 21

    Twerenbold, D., Gerber, D., Gritti, D., et al. (2001) Single molecule detector for mass spectrometry with mass independent detection efficiency. Proteomics 1, 66–69.

    PubMed  Article  CAS  Google Scholar 

  22. 22

    Krause, E., Wenschuh, H., and Jungblut, P. R. (1999) The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal. Chem. 71, 4160–4165.

    PubMed  Article  CAS  Google Scholar 

  23. 23

    Richter, R., Schulz-Knappe, P., Schrader, M., et al. (1999) Composition of the peptide fraction in human blood plasma: database of circulating human peptides. J. Chromatogr. B. 726, 25–35.

    Article  CAS  Google Scholar 

  24. 24

    Lowenthal, M. S., Mehta, A. I., Frogale, K., et al. Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin. Chem. 51, 1933–1945.

  25. 25

    Villaneuva, J., Shaffer, D. R., Philip, J., et al. (2006) Differential exopeptidase activities confere tumor-specific serum peptidome patterns. J. Clin. Invest. 116, 271–284.

    Article  CAS  Google Scholar 

  26. 26

    Hortin, G. L., Shen, R. F., Martin, B. M., and Remaley, A. T. (2006) Diverse range of small peptides associated with high-density lipoprotein. Biochem. Biophys. Res. Commun. 340, 909–915.

    PubMed  Article  CAS  Google Scholar 

  27. 27

    Higai, K., Aoki, Y., Azuma, Y., and Matsumoto, K. (2005) Glycosylation of site-specific glycans of alpha1-acid glycoprotein and alternations in acute and chronic inflammation. Biochim. Biophys. Acta. 1725, 128–135.

    PubMed  CAS  Google Scholar 

  28. 28

    Lacey, J. M., Bergen, H. R., Magera, M. J., Naylor, S., and O'Brien, J. F. (2001) Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry. Clin. Chem. 47, 513–518.

    PubMed  CAS  Google Scholar 

  29. 29

    Schweigert, E. J., Wirth, K., and Raila, J. (2004) Characterization of the microheterogeneity of transthyretin in plasma and urine using SELDI-TOF-MS immunoassay. Proteome Sci. 2, 5.

    PubMed  Article  CAS  Google Scholar 

  30. 30

    Nepomuceno, A. I., Mason, C. J., Muddiman, D. C., Bergen, H. R., 3rd, Zeldenrust, S. R. (2004) Detection of genetic variants of transthyretin by liquid chromatography-dual electrospray ionization Fourier-transform ioncyclotron resonance mass spectrometry. Clin. Chem. 50, 1535–1543.

    PubMed  Article  CAS  Google Scholar 

  31. 31

    Hoeg, J. M., Meng, M. S., Ronan, R., Thomas, F., Brewer, H. B., Jr. (1986) Human apolipoprotein A-I. Post-translational modification by fatty acid acylation. J. Biol. Chem. 261, 3911–3914.

    PubMed  CAS  Google Scholar 

  32. 32

    Shao, B., Bergt, C., Fu, X., et al. (2005) Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxi-dase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem. 280, 5983–5993.

    PubMed  Article  CAS  Google Scholar 

  33. 33

    Heller, M., Stalder, D., Schlappritzi, E., Hayn, G., Matter, U., and Haeberli, A. (2005) Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins. Proteomics 5, 2619–2630.

    PubMed  Article  CAS  Google Scholar 

  34. 34

    Bondarenko, P. V., Cockrill, S. L., Watkins, L. K., Cruzado, I. D., and Macfarlane, R. D. (1999) Mass spectral study of polymorphism of the apolipoproteins of very low density lipoprotein. J. Lipid Res. 40, 543–555.

    PubMed  CAS  Google Scholar 

  35. 35

    Kiernan, U. A., Black, I. A., Williams, P., and Nelson, R. W. (2002) High-throughput analysis of hemoglobin from neonates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Chem. 48: 947–949.

    PubMed  CAS  Google Scholar 

  36. 36

    Eriksen, N. and Benditt, E. P. (1986) Serum amyloid A (ApoSAA) and lipoproteins. Meth. Enzymol. 128, 311–320.

    PubMed  CAS  Google Scholar 

  37. 37

    Schultz, D. R. and Arnold, P. I. (1990) Properties of four acute phase proteins: C-reactive protein, serum amyloid A protein, α1-acid glycoprotein, and fibrinogen. Sem. Arthritis Rheum. 20, 129–147.

    Article  CAS  Google Scholar 

  38. 38

    Silverman, L. M. and Christenson, R. H. (1994) Amino acids and proteins, in Tietz Textbook of Clinical Chemistry, 2nd ed., (Burtis, C. A. and Ashwood, E. R., eds.) WB Saunders, Philadelphia, PA, pp. 625–734.

    Google Scholar 

  39. 39

    Gotto, A. M., Jr., Pownall, H. J., and Havel, R. J. (1986) Introduction to the plasma lipoproteins. Meth. Enzymol. 128, 3–41.

    PubMed  CAS  Article  Google Scholar 

  40. 40

    Putnam, F. W. (1975) Alpha, beta, gamma, omega—the roster of the plasma proteins, in The Plasma Proteins, 2nd ed., (Putnam, F. W., ed.), Academic Press, New York, pp. 57–130.

    Google Scholar 

  41. 41

    Peters, T., Jr. (1983) Plasma proteins made by the liver, in Plasma Protein Secretion by the Liver, (Glaumann, H., Peters, T., Jr., and Redman, C., eds.), Academic Press, New York, pp. 1–5.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Glen L. Hortin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hortin, G.L., Remaley, A.T. Mass determination of major plasma proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Proteom 2, 103–115 (2006). https://doi.org/10.1385/CP:2:1:103

Download citation

Keywords

  • Sialic Acid
  • Ammonium Acetate
  • Acute Phase Response
  • Serum Amyloid
  • Transthyretin