Skip to main content

Salivary protein profiling in type I diabetes using two-dimensional electrophoresis and mass spectrometry


Owing to its noninvasive collection, saliva is considered as a potent diagnostic fluid. The goal of this study was to investigate the modification of the salivary proteome occurring in type 1 diabetes to highlight potential biomarkers of the pathology. High-resolution two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were combined to perform a largescale analysis. The proteomic comparison of saliva samples from healthy subjects and poorly controlled type 1 diabetes patients revealed a modulation of 23 proteins. Fourteen isoforms of α-amylase, one prolactin inducible protein, three isoforms of salivary acidic protein-1, and three isoforms of salivary cystatins SA-1 were detected as under expressed, whereas two isoforms of serotransferrin were over expressed in the pathological condition. The proteins under expressed were all known to be implicated in the oral anti-inflammatory process, suggesting that the pathology induced a decrease of non-immunological defense of oral cavity. As only particular isoforms of proteins were modulated, type 1 diabetes seemed to differentially affect posttranslational modification.


  1. 1

    Kaufman, E. and Lamster, I. B. (2002) The diagnostic applications of saliva-a review. Crit. Rev. Oral. Biol. Med. 13, 197–212.

    PubMed  Google Scholar 

  2. 2

    Lawrence, H. P. (2002) Salivary markers of systemic disease: noninvasive diagnosis of disease and monitoring of general health. J. Can. Dent. Assoc. 68, 170–174.

    PubMed  Google Scholar 

  3. 3

    Streckfus, C. F. and Bigler, L. R. (2002) Saliva as a diagnostic fluid. Oral. Dis. 8, 69–76.

    PubMed  Article  CAS  Google Scholar 

  4. 4

    Mata, A. D., Marques, D., Rocha, S., et al. (2004) Effects of diabetes mellitus on salivary secretion and its composition in the human. Mol. Cell. Biochem. 261, 137–142.

    PubMed  Article  CAS  Google Scholar 

  5. 5

    Bridges, R. B., Anderson, J. W., Saxe, S. R., Gregory, K., and Bridges, S. R. (1996) Periodontal status of diabetic and non-diabetic men: effects of smoking, glycemic control, and socioeconomic factors. J. Periodontol. 67, 1185–1192.

    PubMed  CAS  Google Scholar 

  6. 6

    de Pommereau, V., Dargent-Pare, C., Robert, J. J., and Brion, M. (1992) Periodontal status in insulin-dependent diabetic adolescents. J. Clin. Periodontol. 19, 628–632.

    PubMed  Article  Google Scholar 

  7. 7

    Musumeci, V., Cherubini, P., Zuppi, C., Zappacosta, B., Ghirlanda, G., and Di Salvo, S. (1993) Aminotransferases and lactate dehydrogenase in saliva of diabetic patients. J. Oral. Pathol. Med. 22, 73–76.

    PubMed  Article  CAS  Google Scholar 

  8. 8

    Cinquini, I., Calisti, L., Fierabracci, V., et al. (2002) Enzymatic markers of salivary cell injury in saliva of type 1 diabetic children. Clin. Oral. Investig. 6, 21–23.

    PubMed  Google Scholar 

  9. 9

    Todd, A. L., Ng, W. Y., Lee, Y. S., Loke, K. Y., and Thai, A. C. (2002) Evidence of autoantibodies to glutamic acid decarboxylase in oral fluid of type 1 diabetic patients. Diabetes Res. Clin. Pract. 57, 171–177.

    PubMed  Article  CAS  Google Scholar 

  10. 10

    Markopoulos, A. K., Belazi, M. A., and Drakoulakos, D. (1997) Glutamic acid decarboxylase autoantibodies in saliva of children with type 1 diabetes. Diabetes Res. Clin. Pract. 38, 169–172.

    PubMed  Article  CAS  Google Scholar 

  11. 11

    Yao, Y., Berg, E. A., Costello, C. E., Troxler, R. F., and Oppenheim, F. G. (2003) Identification of protein components in human acquired enamel pellicle and whole saliva using novel proteomics approaches. J. Biol. Chem. 278, 5300–5308.

    PubMed  Article  CAS  Google Scholar 

  12. 12

    Ghafouri, B., Tagesson, C., and Lindahl, M. (2003) Mapping of proteins in human saliva using two dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics 3, 1003–1010.

    PubMed  Article  CAS  Google Scholar 

  13. 13

    Vitorino R., Lobo, M. J., Duarte, J. A., Ferrer-Correia, A. J., Domingues, P. M., and Amado, F. M. (2004) Identification of human whole saliva protein components using proteomics. Proteomics 4, 1109–1115.

    PubMed  Article  CAS  Google Scholar 

  14. 14

    Hardt, M., Thomas, L. R., Dixon, S. E., et al. (2005) Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry 44, 2885–2899.

    PubMed  Article  CAS  Google Scholar 

  15. 15

    Hu, S., Xie, Y., Ramachandran, P., et al. (2005) Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics 5, 1714–1728.

    PubMed  Article  CAS  Google Scholar 

  16. 16

    Hirtz C., Chevalier, F., Sommerer, N., et al. (2005) Complexity of the human whole saliva proteome. J. Physiol. Biochem. 61, 469–480.

    PubMed  CAS  Article  Google Scholar 

  17. 17

    Hirtz, C., Chevalier, F., Centeno, D., et al. (2005) MS characterization of multiple forms of alpha-amylase in human saliva. Proteomics 5, 4597–4607.

    PubMed  Article  CAS  Google Scholar 

  18. 18

    Huang, C. M. (2004) Comparative proteomic analysis of human whole saliva. Arch. Oral. Biol. 49, 951–962.

    PubMed  Article  CAS  Google Scholar 

  19. 19

    Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    PubMed  Article  CAS  Google Scholar 

  20. 20

    Jenson, O. N., Wilm, M., Srevchenko, A., and Mann, M. (1994) Peptide sequencing of 2-DE gel isolated proteins by nanoelectrospray tandem mass spectrometry. Methods Mol. Biol. 112, 513–530.

    Google Scholar 

  21. 21

    Hill, J. (2004) Identifying and managing the complications of diabetes. Nurs. Times 100, 40–44.

    PubMed  Google Scholar 

  22. 22

    Varvarovska, J., Racek, J., Stetina, R., et al. (2004) Aspects of oxidative stress in children with type 1 diabetes mellitus. Biomed. Pharmacother. 58, 539–545.

    PubMed  Article  CAS  Google Scholar 

  23. 23

    Bernfeld, P. (1951) Enzymes of starch degradation and synthesis. In Advances in Enzymology Vol. 12, (Nord, F. F., ed.), Interscience, New York, pp. 379–385.

    Google Scholar 

  24. 24

    Zakowski, J. J. and Bruns, D. E. (1985) Biochemistry of human alpha amylase isoenzymes. Crit. Rev. Clin. Lab. Sci. 21, 283–322.

    PubMed  CAS  Article  Google Scholar 

  25. 25

    Rudney, J. D., Ji, Z., Larson, C. J., Liljemark, W. F., and Hickey, K. L. (1995) Saliva protein binding to layers of oral streptococci in vitro and in vivo. J. Dent. Res. 74, 1280–1288.

    PubMed  CAS  Google Scholar 

  26. 26

    Dickinson, D. P. (2002) Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit. Rev. Oral. Biol. Med. 13, 238–275.

    PubMed  CAS  Article  Google Scholar 

  27. 27

    Baron, A., DeCarlo, A., and Featherstone, J. (1999) Functional aspects of the human salivary cystatins in the oral environment. Oral. Dis. 5, 234–240.

    PubMed  CAS  Article  Google Scholar 

  28. 28

    Schenkels, L. C., Walgreen-Weterings, E., Oomen, L. C., et al. (1997) In vivo binding of the salivary glycoprotein EP-GP (identical to GCDFP-15) to oral and non-oral bacteria detection and identification of EP-GP binding species. Biol. Chem. 378, 83–88.

    PubMed  CAS  Article  Google Scholar 

  29. 29

    Clark, J. W., Snell, L., Shiu, R. P., et al. (1999) The potential role for prolactin-inducible protein (PIP) as a marker of human breast cancer micrometastasis. Br. J. Cancer 81, 1002–1008.

    PubMed  Article  CAS  Google Scholar 

  30. 30

    Lee, B., Bowden, G. H., and Myal, Y. (2002) Identification of mouse submaxillary gland protein in mouse saliva and its binding to mouse oral bacteria. Arch. Oral. Biol. 47, 327–332.

    PubMed  Article  CAS  Google Scholar 

  31. 31

    Morgan, E. H. (1972) The role of transferrin in iron metabolism. Med. J. Aust. 2, 322–325.

    PubMed  CAS  Google Scholar 

  32. 32

    Thomas, M. C., MacIsaac, R. J., Tsalamandris, C., and Jerums, G. (2004) Elevated iron indices in patients with diabetes. Diabet. Med. 21, 798–802.

    PubMed  Article  CAS  Google Scholar 

  33. 33

    Jones, A. F., Winkles, J. W., Jennings, P. E., Florkowski, C. M., Lunec, J., and Barnett, A. H. (1988) Serum antioxidant activity in diabetes mellitus. Diabetes Res. 7, 89–92.

    PubMed  CAS  Google Scholar 

  34. 34

    Vining, R. F., McGinley, R. A., and Symons, R. G. (1983) Hormones in saliva: mode of entry and consequent implications for clinical interpretation. Clin. Chem. 29, 1752–1756.

    PubMed  CAS  Google Scholar 

  35. 35

    Lac, G. (2001) Saliva assays in clinical and research biology. Pathol. Biol. 49, 660–667.

    PubMed  Article  CAS  Google Scholar 

  36. 36

    Wilmarth, P. A., Riviere, M. A., Rustvold, D. L., Lauten, J. D., Madden, T. E., and David, L. L. (2004) Two-dimensional liquid chromatog raphy study of the human whole saliva proteome. J. Proteome Res. 3, 1017–1023.

    PubMed  Article  CAS  Google Scholar 

  37. 37

    Ferguson, D. B. (1987) Current diagnostic uses of saliva. J. Dent. Res. 66, 420–424.

    PubMed  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Christophe Hirtz.

Additional information

Authors have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hirtz, C., Chevalier, F., Sommerer, N. et al. Salivary protein profiling in type I diabetes using two-dimensional electrophoresis and mass spectrometry. Clin Proteom 2, 117–127 (2006).

Download citation


  • Diabetic Patient
  • Oral Cavity
  • Saliva Sample
  • Salivary Protein
  • Healthy Subject