Twomey JD, Brahme NN, Zhang B. Drug-biomarker co-development in oncology - 20 years and counting. Drug Resist Updat. 2017;30:48–62.
Article
PubMed
Google Scholar
Goossens N, Nakagawa S, Sun X, Hoshida Y. Cancer biomarker discovery and validation. Transl Cancer Res. 2015;4:256–69.
CAS
PubMed
Google Scholar
Borrebaeck CAK. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat Rev Cancer. 2017;17:199–204.
Article
CAS
PubMed
Google Scholar
Zhu B, Song N, Shen R, Arora A, Machiela MJ, Song L, et al. Integrating Clinical and Multiple Omics Data for Prognostic Assessment across Human Cancers. Sci Rep. 2017;7:16954.
Article
PubMed
PubMed Central
CAS
Google Scholar
Diamandis EP, Bast RC Jr, Gold P, Chu TM, Magnani JL. Reflection on the discovery of carcinoembryonic antigen, prostate-specific antigen, and cancer antigens CA125 and CA19-9. Clin Chem. 2013;59:22–31.
Article
CAS
PubMed
Google Scholar
Polanski M, Anderson NL. A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights. 2007;1:1–48.
PubMed
PubMed Central
Google Scholar
Poste G. Bring on the biomarkers. Nature. 2011;469:156–7.
Article
CAS
PubMed
Google Scholar
Schiess R, Wollscheid B, Aebersold R. Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol. 2009;3:33–44.
Article
CAS
PubMed
Google Scholar
Boorjian SA, Eastham JA, Graefen M, Guillonneau B, Karnes RJ, Moul JW, et al. A critical analysis of the long-term impact of radical prostatectomy on cancer control and function outcomes. Eur Urol. 2012;61:664–75.
Article
PubMed
Google Scholar
Tzou K, Tan WW, Buskirk S. Treatment of men with rising prostate-specific antigen levels following radical prostatectomy. Expert Rev Anticancer Ther. 2011;11:125–36.
Article
PubMed
Google Scholar
Khoo A, Liu LY, Nyalwidhe JO, Semmes OJ, Vesprini D, Downes MR, et al. Proteomic discovery of non-invasive biomarkers of localized prostate cancer using mass spectrometry. Nat Rev Urol. 2021;18:707–24.
Article
PubMed
PubMed Central
Google Scholar
Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, Lalonde E, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 2015;47:736–45.
Article
CAS
PubMed
Google Scholar
Percy AJ, Byrns S, Pennington SR, Holmes DT, Anderson NL, Agreste T, et al. Clinical Translation of MS-based Quantitative Plasma Proteomics: Status, Challenges, Requirements, and Potential. Expert Rev Proteomics. 2016. https://doi.org/10.1080/14789450.2016.1205950.
Article
PubMed
Google Scholar
Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, et al. Mass spectrometry-based plasma proteomics: considerations from sample collection to achieving translational data. J Proteome Res. 2019;18:4085–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Li X-J, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21:660–6.
Article
CAS
PubMed
Google Scholar
Cima I, Schiess R, Wild P, Kaelin M, Schüffler P, Lange V, et al. Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer. Proc Natl Acad Sci U S A. 2011;108:3342–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poluri RTK, Audet-Walsh É. Genomic Deletion at 10q23 in Prostate Cancer: More Than PTEN Loss? Front Oncol. 2018;8:246.
Article
PubMed
PubMed Central
Google Scholar
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, et al. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol. 2018;15:222–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehrian-Shai R, Chen CD, Shi T, Horvath S, Nelson SF, Reichardt JKV, et al. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. Proc Natl Acad Sci U S A. 2007;104:5563–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steuber T, Tennstedt P, Macagno A, Athanasiou A, Wittig A, Huber R, et al. Thrombospondin 1 and cathepsin D improve prostate cancer diagnosis by avoiding potentially unneeded prostate biopsies. BJU Int. 2018. https://doi.org/10.1111/bju.14540.
Article
PubMed
PubMed Central
Google Scholar
Umbehr M, Kessler TM, Sulser T, Kristiansen G, Probst N, Steurer J, et al. ProCOC: the prostate cancer outcomes cohort study. BMC Urol. 2008;8:9.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Shah P, Zhang H. Solid phase extraction of N-linked glycopeptides using hydrazide tip. Anal Chem. 2013;85:10670–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van der Loo MPJ. Distribution based outlier detection in univariate data. Statistics Netherlands; 2010.
van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45:1–67.
Article
Google Scholar
Breiman L. Random Forests. Mach Learn. 2001;45:5–32.
Article
Google Scholar
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77.
Article
Google Scholar
Knezevic D, Goddard AD, Natraj N, Cherbavaz DB, Clark-Langone KM, Snable J, et al. Analytical validation of the Oncotype DX prostate cancer assay - a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics. 2013;14:690.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sardana G, Dowell B, Diamandis EP. Emerging biomarkers for the diagnosis and prognosis of prostate cancer. Clin Chem. 2008;54:1951–60.
Article
CAS
PubMed
Google Scholar
Wilson SR, Gallagher S, Warpeha K, Hawthorne SJ. Amplification of MMP-2 and MMP-9 production by prostate cancer cell lines via activation of protease-activated receptors. Prostate. 2004;60:168–74.
Article
CAS
PubMed
Google Scholar
Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics. 2014;13:1753–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seamonds B, Yang N, Anderson K, Whitaker B, Shaw LM, Bollinger JR. Evaluation of prostate-specific antigen and prostatic acid phosphatase as prostate cancer markers. Urology. 1986;28:472–9.
Article
CAS
PubMed
Google Scholar
Efron B, Tibshirani RJ. An Introduction to the Bootstrap Chapman and Hall New York. 1993.
Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P, Bocquet N, et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. Elife. 2018. https://doi.org/10.7554/eLife.34317.
Article
PubMed
PubMed Central
Google Scholar
Burke HB. Predicting clinical outcomes using molecular biomarkers. Biomark Cancer. 2016;8:89–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Füzéry AK, Levin J, Chan MM, Chan DW. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin Proteomics. 2013;10:13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010;56:177–85.
Article
CAS
PubMed
Google Scholar
Angeles AK, Bauer S, Ratz L, Klauck SM, Sültmann H. Genome-based classification and therapy of prostate cancer. Diagnostics. 2018. https://doi.org/10.3390/diagnostics8030062.
Article
PubMed
PubMed Central
Google Scholar
Erho N, Crisan A, Vergara IA, Mitra AP, Ghadessi M, Buerki C, et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE. 2013;8:e66855.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cullen J, Rosner IL, Brand TC, Zhang N, Tsiatis AC, Moncur J, et al. A Biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol. 2015;68:123–31.
Article
PubMed
Google Scholar
Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. 2014;66:550–60.
Article
PubMed
Google Scholar
Sinha A, Huang V, Livingstone J, Wang J, Fox NS, Kurganovs N, et al. The proteogenomic landscape of curable prostate cancer. Cancer Cell. 2019;35:414-27.e6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stastna M, Van Eyk JE. Secreted proteins as a fundamental source for biomarker discovery. Proteomics. 2012;12:722–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2016. https://doi.org/10.1007/s00216-016-9880-6.
Article
PubMed
PubMed Central
Google Scholar
Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5:845–56.
Article
CAS
PubMed
Google Scholar
Dixit CK, Kadimisetty K, Otieno BA, Tang C, Malla S, Krause CE, et al. Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst. 2016;141:536–47.
Article
CAS
PubMed
Google Scholar
Nallanthighal S, Heiserman JP, Cheon D-J. The role of the extracellular matrix in cancer stemness. Front Cell Dev Biol. 2019;7:86.
Article
PubMed
PubMed Central
Google Scholar
Yu Q, Xue Y, Liu J, Xi Z, Li Z, Liu Y. Fibronectin promotes the malignancy of glioma stem-like cells via modulation of cell adhesion, differentiation Proliferation and Chemoresistance. Front Mol Neurosci. 2018;11:130.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hurt EM, Chan K, Serrat MAD, Thomas SB, Veenstra TD, Farrar WL. Identification of vitronectin as an extrinsic inducer of cancer stem cell differentiation and tumor formation. Stem Cells. 2010;28:390–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felding-Habermann B, Cheresh DA. Vitronectin and its receptors. Curr Opin Cell Biol. 1993;5:864–8.
Article
CAS
PubMed
Google Scholar
Sajic T, Liu Y, Arvaniti E, Surinova S, Williams EG, Schiess R, et al. Similarities and Differences of Blood N-glycoproteins in five solid carcinomas at localized clinical stage analyzed by SWATH-MS. Cell Rep. 2018;23:2819-31.e5.
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.
Article
CAS
PubMed
Google Scholar
Saito M, Goto A, Abe N, Saito K, Maeda D, Ohtake T, et al. Decreased expression of CADM1 and CADM4 are associated with advanced stage breast cancer. Oncol Lett. 2018;15:2401–6.
PubMed
Google Scholar
Faraji F, Pang Y, Walker RC, Nieves Borges R, Yang L, Hunter KW. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity. PLoS Genet. 2012;8:e1002926.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, et al. TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet. 2001;27:427–30.
Article
CAS
PubMed
Google Scholar
Van Eyk JE, Snyder M. Precision medicine: role of proteomic in changing clinical management and care. J Proteome Res. 2018. https://doi.org/10.1021/acs.jproteome.8b00504.
Article
PubMed
PubMed Central
Google Scholar
Baker S, Ali I, Silins I, Pyysalo S, Guo Y, Högberg J, et al. Cancer Hallmarks Analytics Tool (CHAT): a text mining approach to organize and evaluate scientific literature on cancer. Bioinformatics. 2017;33:3973–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol. 1995;57:289–300.
Google Scholar